УДК 621.7.016

СРАВНЕНИЕ МЕТОДОВ МОДЕЛИРОВАНИЯ ПРОЦЕССОВ РЕЗАНИЯ

Евгений Олегович Подчасов

Магистр 1 года,

кафедра «Инструментальная техника и технологии»

Московский государственный технический университет им. Н. Э. Баумана

Научный руководитель: Н.Н. Зубков,

доктор технических наук, профессор кафедры «Инструментальная техника и технологии»

Важную роль при организации современного производства имеет применение наукоемких аналитических способов предварительного расчета, моделирования процессов. прогнозирования Применение производственных различных допроизводственного анализа явлений, происходящих в процессе механической обработки, позволяет заранее прогнозировать как предположительное качество готовой продукции (включая состояние поверхностного слоя), так и состояние режущего инструмента в процессе производства.

В настоящее время наиболее распространенными методами предварительного анализа процессов резания являются использование расчетных схем, основанных на теории пластичности, а так же применение пакетов конечноэлементного моделирования и анализа процессов металлообработки.

В работе рассматривались модель процесса резания, предложенная профессором А.Л. Воронцовым [1] и конечноэлементные модели, реализуемые программным комплексом Deform (модуль 2d Machining) [2]. Результаты расчета сил резания сравнивались с значениями, полученными экспериментально.

Эксперимент по определению сил резания при свободном точении проводился с использованием динамометра Kistler модели 9257 (Швейцария). Исследование динамики резания проводилось на станке 16K20. Для определения сил резания при свободном точении обрабатывалась заготовка из стали 40X твердостью 300HB, представляющая собой цилиндр с канавками, нарезанными таким образом, что ширина буртиков между ними является заданной (в зависимости от вида эксперимента постоянной либо изменяющейся с шагом в 1 мм). Обработка буртиков производилась отрезным резцом шириной 4,5 мм. Материал режущей части – твердый сплав марки T15K6. Геометрические параметры режущей части: $\alpha = 8^{\circ}$, $\gamma = 10^{\circ}$.

Поскольку рассматриваемые модели резания основаны на предположении об ортогональности резания, для оценки адекватности моделей проверена независимость величины удельной силы резания от длины режущей кромки. Результаты эксперимента представлены в таблице 1.

Таблица 1. Зависимость удельной величины главной составляющей силы резания P_z от глубины резания. Сталь 40X-T15K6, $\alpha=8^\circ$, $\gamma=10^\circ$, $S_o=0,1$ мм/об, V=5

M/M	ин	•

глубина резания t , мм	1	2	3	4
удельная сила резания, p_z , H/мм	396	399	397	401

Экспериментальные данные подтвердили предположение об ортогональности, что позволяет использование рассматриваемых моделей.

Точность моделей определялась путем вычисления по моделям сил резания при варьировании кинематических параметров (скорость и подача) процесса резания. Результаты эксперимента представлены в таблицах 2 и 3.

Таблица 2. Сравнение величин главных составляющих сил резания, полученных экспериментально и рассчетно.

Сталь 40X - T15K6, $\alpha = 8^{\circ}$, $\gamma = 10^{\circ}$, V = 30 м/мин, t = 3 мм.

Подача на оборот, мм/об.	Главная составляющая силы резания Pz, H.		
	Эксперимент	МКЭ	Аналитический
			расчет
0,05	522,4	509,0	546,8
0,1	858,6	852,0	1093,6
0,2	1385,8	1280,0	2187,2
0,3	1855,0	18048,0	3280,9
0,35	2164,5	2053,0	3827,7

Таблица 3.Сравнение величин главных составляющих сил резания, полученных экспериментально и рассчетно.

Сталь 40X - T15K6, $\alpha = 8^{\circ}$, $\gamma = 10^{\circ}$, So =0,1 мм/об, t=3 мм.

	C I WILD	.011 110110, 00 0,	10,00 0,1 11111/00, 0	
Скорость	Главная составляющая силы резания Рz, Н.			
резания V, м/мин				
	Эксперимент	МКЭ	Аналитический	
			расчет	
5	864,3	874,0	875,7	
30	852,9	859,0	863,4	
94	842,4	849,0	849,7	
149	840,1	848,0	847,7	

В результате сравнения выявлена относительная сходимость моделей процессов резания с экспериментом, причем сходимость аналитической модели Воронцова падает при увеличении подач. В целом, можно сказать, что полученные выводы о влиянии режимов на силовые характеристики процессов резания совпадают с высказанными в работе [3], а изученные методы моделирования процессов резания могут применяться для инженерных расчетов.

Литература

- 1. Воронцов A.Л. Разработка новой теории резания // Вестник Машиностроения 2008 N0 1 12
- 2. Залога В. А., Криворучко Д. В., Хвостик С. Н. Имитационная модель прямоугольного свободного резания// Вестник СумГУ. -2005. \mathbb{N} 11. С. 113- 122
- 3. *D.-A. Coroni* Prediction of Cutting Forces at 2D Titanium Machining /D.-A. Coroni, S.-M. Croitoru // Procedia Engineering, Volume 69. 2014. Pages 81–89.