УДК 621.993.2

ПОВЫШЕНИЕ НАДЕЖНОСТИ МЕТЧИКОВ С ИСПОЛЬЗОВАНИЕМ СМАЗОЧНО-ОХЛАЖДАЮЩЕЙ ТЕХНИЧЕСКОЙ СРЕДЫ ИОНИЗИРОВАННЫЙ ВОЗДУХ

Мария Александровна Шавва

Студентка 6 курса

Российская Федерация, г. Москва, Московский Государственный Технический Университет имени Н.Э. Баумана, кафедра «Инструментальная техника и технологии»

Научный руководитель: А.В. Литвиненко, кандидат технических наук, профессор кафедры «Инструментальная техника и технологии»

В настоящее время в автомобильной и аэрокосмической промышленности наиболее остро стоит вопрос повышения надежности резьбонарезающего инструмента, в частности машинных метчиков. При обработке легких сплавов и сложно обрабатываемых материалов возможно повышенное наростообразование, в результате чего происходит заклинивание метчика или даже его поломка. Как правило, в этих случаях для извлечения режущего инструмента из тела заготовки необходимо прибегнуть к дорогостоящим и долговременным методам (например, электроэрозионная обработка). Это приводит к простоям оборудования и браку на производстве.

Повысить надежность резьбонарезающего инструмента можно несколькими способами: использование специальной оснастки, подбор режимов резания, изменение геометрии режущего инструмента и т.д. Однако самым рациональным методом является использование смазочно-охлаждающих сред. В частности актуально использование газообразных смазочно-охлаждающих сред, ввиду их экологической безопасности, простоты применения и утилизации.

Действие применения газообразной смазочно-охлаждающей среды ионизированный воздух рассмотрено во многих литературных источниках, при этом ее эффективность весьма различна у разных авторов (в разных источниках повышение работоспособности колеблется в пределах от 20-300%). На базе кафедры «Инструментальная техника и технологии» были проведены эксперименты по резьбонарезанию в различных материалах (сталь 45, серый чугун 15, медный сплав М3р, алюминиевый сплав Д16 и титановый сплав ВТ3) с использованием смазочно-охлаждающей среды ионизированный воздух.

Эксперименты проводились на различных режимах (варьировалась скорость вращения шпинделя), но при постоянной геометрии машинного метчика (метчик М10, шаг стандартный). Резьба выполнялась в сквозном отверстии без использования смазочно-охлаждающих сред (для чистоты сравнения результатов) и с использованием ионизированного воздуха. Для подачи воздушной струи использовался компрессор (давление при проведении эксперимента составляло 4,5 атм) и промышленный ионизатор.

В качестве величины, отвечающей за стойкость инструмента, рассматривался момент, возникающий при резьбонарезании (момент резания, момент реверса и момент

трения). Снижение момента гарантирует снижение нагрузок, действующих на режущий инструмент, а, следовательно, уменьшение износа режущих кромок и увеличение периода стойкости метчика.

Экспериментальные данные доказывают положительное влияние смазочноохлаждающей среды ионизированный воздух на уменьшение момента при резьбонарезании. Эффект использования смазочно-охлаждающей среды составляет 5-20%.

Таблица 1. Экспериментальные данные

Ма териал заготовки	Чис ло оборотов шпинделя, об/мин	Без использования			С использованием		
		ионизированного воздуха			ионизированного воздуха		
		M	M	M	M	M	M
		омент	омент	омент	омент	омент	омент
		резания,	реверса,	трения,	резания,	реверса,	трения,
		Нм	Нм	Нм	Нм	Нм	Нм
Д16	250	9,3	5,2	2,5	8,0	3,6	2,1
	355	8,2	4,3	1,8	8,7	3,8	1,6
	500	6,7	3,7	1,4	4,7	3,7	1,4
	710	7,0	4,3	1,5	5,2	3,3	1,4
СЧ15	125	8,1	2,3	2,1	7,1	1,8	1,7
	180	7,2	2,1	2,0	5,9	1,9	1,6
	250	6,6	2,0	1,8	5,2	1,7	1,5
CT45	125	10,7	4,2	1,7	9,7	3,7	1,8
	180	9,0	2,5	1,9	7,9	2,1	2,3
BT3	90	18	2,8	1,4	16,1	3,2	1,7
	125	22,4	9,2	1,4	19,9	7,9	1,6

Наиболее эффективное действие смазочно-охлаждающая среда ионизированный воздух оказывает при резьбонарезании в алюминиевых сплавах и чугунах. Для повышения действия среды необходимо применять дополнительное охлаждение, осуществляемое при помощи внутреннего подвода через канал метчика.

Литература

- 1. Древаль A.Е, Литвиненко A.В. Формирование отказов метчика. М.: МГТУ им. Баумана, 2012. 5 с.
- 2. *Латышев Н.В.* Влияние микродоз масла И-20A на эффективность ионизированной воздушной СОТС. Иваново: Ивановский Гсударственный Университет, 2003 5с.: ил.