УДК 621.389

УМЕНЬШЕНИЕ ШЕРОХОВАТОСТИ ПОДЛОЖЕК AIN С ПРЕДВАРИТЕЛЬНОЙ МЕХАНИЧЕСКОЙ ОБРАБОТКОЙ ИОННЫМ ТРАВЛЕНИЕМ

Юлия Сергеевна Макарова⁽¹⁾, Денис Дмитриевич Васильев⁽²⁾

Студент 3 курса⁽¹⁾, студент 5 курса,⁽²⁾, кафедра «Электронные технологии в машиностроении» Московский государственный технический университет им. Н.Э. Баумана

Научный руководитель: К.М. Моисеев, кандидат технических наук, доцент кафедры «Электронные технологии в машиностроении»

Введение

Основной наиболее характерной тенденцией развития технологии микроэлектроники является непрерывное повышение точности изготовления как элементов «традиционных» ИС, так и микроструктур, на основе которых строятся приборы функциональной микроэлектроники. Дальнейшее повышение быстродействия и степени интеграции требует получать при массовом изготовлении элементы с субмикронными размерами. Получение данных элементов требует высокой точности выполнения операций, применяемых при изготовлении ИС. Соответственно, также необходимо соответствовать требованиям высокой точности предварительной обработки основ ИС – подложек [1].

Развитие ряда областей новой техники вызывает необходимость создания керамических материалов, характеризующихся высокой термической стойкостью, инертностью к агрессивным средам, значительной механической прочностью и хорошими электроизоляционными свойствами и высокой теплопроводностью. Одним из наиболее перспективных материалов, отвечающих этим требованиям, является керамика на основе нитрида алюминия. Применяемый в настоящее время разработчиками электронной аппаратуры оксид бериллия, который имеет лучшую среди диэлектриков теплопроводность, является остродефицитным, малодоступным и высокотоксичным материалом, В связи с этим приобретает особое значение поиск альтернативного материала. Одним из таких материалов является нетоксичный экологически чистый нитрид алюминия. К тому же, керамика из нитрида алюминия по коэффициенту теплового расширения ближе к кремнию и арсениду галлия, основа большинства кристаллов, применяемых в электронике, чем керамика из оксида бериллия [2].

Состояние поверхности подложки оказывает существенное влияние на структуру наносимых пленок и параметры пленочных элементов. Большая шероховатость поверхности подложки, наличие на ней микронеровностей уменьшают толщину пленок, вызывают локальное изменение электрофизических свойств пленок и тем самым снижают воспроизводимость параметров пленочных элементов и их надежность. Поэтому подложки для тонкопленочных ИМС должны иметь минимальную шероховатость, быть без пор и трещин. Так, при нанесении тонких пленок толщиной до 100 нм допустимая высота микронеровностей не должна превышать 25 нм, что соответствует 14-му классу чистоты поверхности подложек.

В данной работе было исследовано влияние режимов ионного травления (в том числе и реактивного) подложек нитрида алюминия с предварительной механической обработкой на значения шероховатости подложек.

Исходные данные и описание экспериментального стенда

Исходными образцами были три предварительно механически обработанные подложки нитрида алюминия. Шероховатость подложек была исследована методом сканирующей зондовой микроскопии на микроскопе Solver NEXT (рис. 1, таблица №1).

Рис. 1. Подложки AlN после механической обработки: a) образец №1, б) образец №2, в) образец №3

|--|

Параметр	Подложки AlN			
	Образец №1	Образец №2	Образец №3	
Шероховатость, мкм	0,411	0,396	0,224	
Peak-to-peak, мкм 5,163		2,966	1,613	

Данные измерений показывают, что шероховатость предварительно механически обработанных подложек нитрида алюминия варьируется в интервале

Ra=0,2...0,4 мкм, что соответствует 9-10 классу шероховатости и не удовлетворяет требованиям, предъявляемым к подложкам

Экспериментальной установкой, в которой проводился процесс ионного травления, является вакуумный универсальный пост (рис. 2), который относится к УВН периодического действия и предназначен для нанесения широкого спектра технологических операций вакуумного осаждения тонких пленок и ионного тавления. Данное оборудование является результатом модернизации прототипа и позволяет формировать различные тонкопленочные структуры в едином вакуумном цикле.

Рис. 2. Вакуумный универсальный пост (ВУП)

В состав вакуумного универсального поста входят следующие основные узлы и системы (рис. 3): турбомолекулярный насос Edwards nEXT400D (1), рама (2), высоковакуумный затвор (3), рабочая камера (4), магнетрон (5), клапан напуска атмосферы (6), ввод вращения (7), двигатель РД-09 (8), датчики измерения вакуума WRG (9), дуговой источник ИД-200-01 (10), электромагнитные клапана (11, 12), форвакуумный механический насос Edwards E2M40 (13), автономный источник ионов (14), байпасная магистраль (15).

Рис. 3. Общий вид вакуумного универсального поста (ВУП)

Технические характеристики ВУП:

- 1. Предельное остаточное давление в рабочей камере: не более 10⁻³ Па;
- 2. Время получения высокого (4·10⁻³ Па) вакуума: 30 мин;
- 3. Количество технологических источников: 3;
- 4. Тип источников:
 - магнетрон с ВЧ источником (МРС);
 - автономный источник ионов (АИИ);
 - дуговой источник ИД-200-01;
- 5. Мощность источника ВЧ магнетронного распыления: 1 кВт;
- 6. Рабочее напряжение дугового источника: 20...40 В;
- 7. Максимальное ускоряющее напряжение АИИ: 1 кВ;
- 8. Расход холодной воды 15±1°С при давлении 0,3...0,4 МПа: 550 л/час;
- 9. Максимальная потребляемая мощность в установившемся режиме: 5 кВт.

Проведение эксперимента и результаты измерений

Подложка устанавливалась в вакуумной камере установки под углом 60° между нормалью к подложке и направлением движения ионного пучка.

Рис.4. Схема эксперимента: 1 – источник ионов; 2 – подложка; 3 – подложкодержатель

Эксперимент проводился при равных режимах работы автономного источника ионов для всех трёх подложек.Образец №1 был протравлена реактивно смесью газов аргона и кислорода, а образцы №2 и №3 – только аргоном (таблица 2).

№	Параметры	№ образца			
		1	2	3	
1	Рабочее давление, Па	0,11	0,11 0,11		
2	Показания РРГ, л/час	2,29	2,02	2,02	
3	Соотношение Ar/ O_2 , N_2	1/1	-	-	
4	Разряд, напряжение, В	295	281	281	
5	Подаваемый ток, мА	35	35	35	
6	Ток разряда, мА	224	222	222	
7	Напряжение пучка, В	1007	1000	1000	
8	Ток пучка, мА	10	10	10	
9	Ускоряющее напряжение, В	600	396	396	

Таблица 2. Параметры процесса обработки подложек

10	Ускоряющий ток, мА	3,1	2,6	2,6
11	Время травления, мин	60	60	60

Полученные после обработки образцы исследованы в сканирующем зондовом микроскопе Solver NEXT (рис. 5, таблица 3).

Рис. 5. Подложки AlN после ионного травления: а) образец №1, б) образец №2, в) образец №3

Парахотр	До травления		После травления			
Параметр	Nº1	<u>№</u> 2	<u>№</u> 3	Nº1	N <u>o</u> 2	<u>№</u> 3
Угол наклона, гр	-	-	-	60	60	60
Разность потенциалов, кВ	-	-	-	1	1	1
Ток, мА	-	-	-	11	10	10
Время травления, мин	-	-	-	60	60	60
Шероховатость, мкм	0,411	0,396	0,224	0,408	0,421	0,430
Peak-to-peak, мкм	5,163	2,966	1,613	3,879	2,964	1,43

Таблица 3. Сводные данные проведенных исследований

Выводы и заключение

По результатам полученных измерений можно заключить, что при реактивноионном травлении уменьшается параметр Peak-to-peak, тогда как шероховатость остается на таком же уровне, а при травлении только в среде инертного газа (аргона) шероховатость предварительно механически обработанных подложек увеличивается. То, что значение параметра Peak-to-peak остается неприемлемо большим даже при реактивно-ионном травлении, позволяет сделать вывод о слишком низком качестве исходной подложки. Тогда как для уменьшения шероховатости следует подбирать иные углы обработки вследствие зависимости коэффициента распыления от угла ионного травления.

Литература

- 1. Данилов Б.С., Киреев В.Ю. Ионное травление микроструктур. М.: Советское радио, 1979. 104 с.
- 2. *Непочатов Ю.К.,Земницкая А.А., Муль П.* Разработка керамики на основе нитрида алюминия для изделий электронной техники. / Современная электроника. 2011, №9. С. 14-16.