УДК 669.018.9:621.791.18:621.771

ИССЛЕДОВАНИЕ СТРУКТУРЫ И СВОЙСТВ КОМПОЗИЦИОННОГО МАТЕРИАЛА СИСТЕМЫ АЛЮМИНИЙ-ТИТАН

Сергей Эдуардович Куркин

Студент 4 курса, кафедра «Материаловедение» Московский государственный технический университет им. Н.Э.Баумана

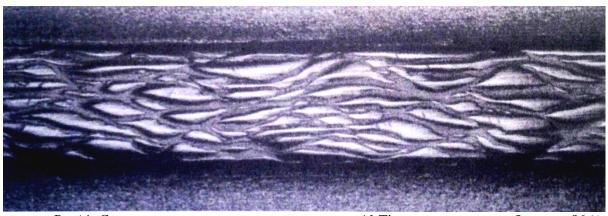
Научный руководитель: Т.В. Соловьева, кандидат технических наук, доцент кафедры «Материаловедение»

Данная работа посвящена технологии получения листового материала из системы Ti - Al, заключающаяся в том, что вначале получают слоистый материал, составленный из чередующихся слоев титана и алюминия, путем сварки в твердой фазе при их совместной деформации при прокатке, а затем полученный слоистый материал подвергают термообработке с образованием необходимого количества интерметаллидов в объеме заготовки.

Одной из особенностей предлагаемого способа является то, что при достижении физического контакта между титаном и алюминием начинают образовываться интерметаллиды, резко снижающие технологическую деформируемость материала. Поэтому процесс был построен таким образом, чтобы при получении слоистого материала не допустить образования хрупких химических соединений Ті - Al. Как отмечается в работе [1] в нанопленках Ті - Al реакция взаимодействия начинается при температуре на 300-400 К ниже температуры плавления алюминия 933 К. Отмечено, что температура инициирования реакции зависит от толщины пленки. В данном случае толщина пленки составила 3,8-125 нм. В работе [2] показать, что нагрев сваренной взрывом 3-хслойной заготовки композиции АМг6-АД1-ОТ4 в интервале 150- 550 °C с выдержкой 1-2 часа не приводит к появлению интерметаллидных прослоек на границе Ті - Al, а их зарождение начинается при температуре свыше 550 °C. Установлено, что с увеличением обжатия толщина переходной зоны увеличивается. Латентный период зависит от степени обжатия и температуры.

При получении слоистого композита исходными материалами были выбраны технически чистый титан марки BT1-0 и алюминиевый сплав АД1.

В соответствии с требованиями ОСТ 1-90145-74 «Фольга из титановых сплавов» титан поставляется в нагартованном состоянии и по своим пластическим характеристикам заметно уступает алюминию. С целью увеличения пластических характеристик титанового слоя и предотвращения надрывов в процессе прокатки фольгу отжигали при 530 °С в вакууме с последующим медленным охлаждением. Такой смягчающий отжиг также позволил снизить содержание азота и водорода в титане, тем самым дополнительно повышая его пластичность.


Из титановых карточек размером 0.1x50x100 мм и алюминиевых пластин размером 0.02x50x100 собирали пакеты с различными толщинами и соотношениями слоев. Для предотвращения окисления слоев, поглощения титаном газов при активном его взаимодействии с атмосферой и обеспечения условий для прочного соединения слоев твердофазную диффузионную сварку прокаткой вели в вакууме (при 0.01 Па) при температурах 450-520 °C. Такой температурный режим исключал образование хрупких интерметаллидов между слоями, резко снижающих технологическую пластичность материала, но сохранял достаточную его деформируемость. Установлено, что при 470 °C интерметаллиды практически не образуются (их содержание не превышало 0.5 %).

Нагретый до требуемой температуры собранный пакет вначале обжимали на вакуумном двухвалковом прокатном стане ДУО-170 в ИМЕТ РАН, а затем уже сваренные пакеты

раскатывали на воздухе на двухвалковом стане ДУО-300 и четырехвалковом стане КВАТРО 110/320x300 при температуре 450 °C.

При составлении пакета исходили из необходимости получения требуемого стехиометрического состава для преимущественного образования интерметаллида γ-TiAl с учетом большой неравномерности обжатия слоев разной прочности при их совместной пластической деформации, особенно на ее конечных стадиях. В результате были выбраны пакеты с толщиной слоев титан/алюминий 100/20, 100/40, 100/60 и 100/200 мкм. Для предотвращения взаимного смещения слоев передний конец пакета фиксировался с помощью стальных заклепок, а для устранения сдвига слоев валками в направлении прокатки при подаче пакета, а также для получения более равномерной его деформации применяли стальные обкладки толщиной 1 мм. На внутреннюю поверхность защитных стальных полос наносили противосварочную пасту.

Установлено, что при прокатке пакета на первом проходе при диффузионной сварке оптимальной является степень деформации 25-40 %, а при последующей раскатке сваренных слоев 8-10 % за проход. При пакетной прокатке наблюдается значительная неравномерность деформации титанового и алюминиевого слоев, причем в большей степени деформируются слои алюминия. Несмотря на предварительно проведенный смягчающий отжиг, в менее пластичных титановых слоях образуются местные сужения, что, в конечном итоге, приводит к нарушению сплошности этих слоев, поскольку при одинаковых степенях деформации титан уже начинает разрушаться, а алюминий еще сохраняет целостность. При этом разрывы титанового слоя носят периодический характер, связанный с накоплением деформации до критического значения. При прокатке пакета до толщины 0,4 мм в большей степени деформируются приповерхностные слои, как видно из рисунка 1.

Рис/ 1. Структура слоистого материала системы Al-Ті после прокатки с обжатием 96 %

Степень деформации в этих слоях не превышала среднем 50—60%, в то время как в центральных слоях она составляла в среднем 35—45%. Такую особенность обжатия слоев необходимо учитывать при формировании пакета. Таким образом, изменяя толщину исходного пакета, можно получить слоистый материал с различными служебными характеристиками, что расширяет области применения получаемого слоистого материала.

Степень нагартованности составляющих пакета оценивали по изменению микротвердости слоев титана и алюминия. Данные измерения микротвердости приведены в таблице 1.

Микротвердость, при разной толщине							
Номер	образцов, МПа						
измерения	2,4 мм (об	бжатие 42%)	0,4 мм (обжатие 98%)				
	Ti	Al	Ti	Al			
1	1803,2	539	1744,4	695,8			
2	2009	607,6	1999,2	686			
3	1871,8	558,6	1920,8	666,4			
4	1999,2	529,2	1783,6	686			
5	1842,4	568,4	1724,8	676,2			
6	1950,2	578,2	1842,4	705,6			

Таблица 1. Микротвердость в слоях титана и алюминия образцов разной толщины

При увеличении обжатия слоистой заготовки с 45 до 98% микротвердость титановых слоев практически не изменилась, тогда как у алюминиевых она увеличилась на 30—40 %.

Для образования интерметаллидов полученный слоистый композиционный материал подвергался нагреву до 510, 590 и 1000 °C. В результате экзотермической реакции на границе раздела «титан-алюминий» образовывались интерметаллические фазы.

Соотношение слоев оказывает существенное влияние на прочностные и пластические свойства материала . Механические испытания показывают, что увеличение доли слоев алюминия в пакете приводит к повышению прочности и снижению пластичности композита. Это объясняется активным образованием интерметаллидов по границам раздела Ti—Al. Так, у материала с соотношением 1:1 слоев Ti и Al σ_B = 198 МПа; $\sigma_{0,2}$ = 151 МПа; δ = 2,9%, а при соотношении слоев 1:2 получили σ_B = 297 МПа; $\sigma_{0,2}$ = 248 МПа; δ = 0,36 % (таблица 2). В целом механические свойства слоистого материала значительно выше, чем у монолитного алюминия, но ниже, чему монолитного титана. Это можно объяснить нарушением сплошности титанового слоя. Характер разрушения образцов был хрупким.

Таблица 2. Механические свойства слоистого и монолитного материалов после прокатки

Материал	δ, %	$\sigma_{\scriptscriptstyle 0,2}, M\Pi a$	σ, МПа	
Ti-Al 1/1	2,91	161	198	
Ti-Al 1/2	0,36	248	297	
Ti (BT1-0)	20	245-343	392-539	
Аl (АД1)	30	30	90	

С целью получения равномерного распределения интерметаллических фаз оптимального размера по объему композита при большем их количестве проводили отжиг образцов при разной температуре ($510-1000\,^{\circ}$ С) и продолжительности выдержки ($0-4\,$ ч). Фазовый состав и количество образовавшихся при нагреве интерметаллидов определяли на установке рентгеноструктурного анализа ДРОН. Условия и результаты отжига приведены в таблице 3.

Таблица 3. Условия термообработки разных композиций Ti/Al и общее количество интерметаллидов, а также оксидов в листе после термообработки

Соотношение исходных Среда материалов (Ti:Al)		Темпера-	Время	Выдержка,	Содержание, % объемн.		
	тура, °С	нагрева, мин	ч	Интерметал- лиды Ti-Al	TiO2	Al ₂ O ₃	
1:1	После прокатки, без отжига				<6	0,6	-
1:1					4,3	2,6	0,9
1:1	Воздух	1100	225	ΗΓ	16	17	13
1:2	Воздух	1100	225	НГ	3	72	24
1:1	Вакуум	590	42	НГ	36	-	-
1:1	Вакуум	590	42	4	34	1	-
1:1	Вакуум	650	42	4	7	-	-
1:1	Вакуум	510	42	НГ	11	-	-
1:2	Вакуум	590	42	4	92	ı	-
1:2	Вакуум	590	42	НΓ	97	- 1	_
1:2	Вакуум	590	42	1	97	-	
1:2	Вакуум	510	42	ΗΓ	12	-	-

Примечание. НГ – нагрев с печью без выдержки.

Рентгеноструктурный анализ слоистого материала показал, что после деформации все же образуется в совокупности до 4-6 % интерметаллидов Ti_3Al , TiAl и Ti_2Al . Это связано, очевидно, с локальным разогревом материала свыше 500 °C при деформации [5]. Указанные интерметаллиды присутствуют в материале после любой термообработки. Следует заметить, что при изменении соотношения слоев Ti/Al равное 1:2 было образовано подавляющее количество интерметаллида $TiAl_2$ (до 90 %).

Ввиду того что, материал был слоистым, распределение выше перечисленных интерметаллидов в объеме заготовки после термообработки было практически равномерным и изменялось в зависимости от температурных и временных условий в пределах от 16 до 97 %.Толщина диффузионного зоны составляла 20-30 нм. Таким образом процесс образования интерметаллидов в слоистом материале является управляемым и в зависимости от требуемых свойств можно создать необходимую объемную долю интерметаллидов, которая и обуславливает механические и функциональные характеристики метериала.

Выводы.

- 1. Анализ физико-химических процессов, протекающих на границе титана и алюминия, позволил разработать концепцию технологии получения слоистого материала, заключающаяся вначале в создании слоистого материала из исходных металлов Ті и АІ путем сварки в твердой фазе в вакууме без образования интерметаллидов, которые снижают технологическую деформируемость материала, а затем при термообработке создать количество упрочняющих интерметаллидных фаз.
- 2. Разработаны температурно-деформационные режимы прокатки в безокислительных условиях пакетов, состоящих из чередующихся фольг толщиной 0,1 мм по 30 шт. каждого металла. Предложены технологические приемы, которые способствовали получению слоистого материала системы Ті А1 с хорошей прочностью соединения слоев. Удалось получить слоистый материал с наноразмерными слоями. Наработана опытная партия слоистого материала для дальнейших исследований.
- 3. Проведены исследования послойной деформации слоев титана и алюминия в пакете. Установлено, что, как и следовало ожидать, слои из алюминия продеформировались на 30-40 % больше чем слои из титана, что привело к шейкообразованию титанового слоя и,

следовательно, к нарушению его сплошности. Приповерхностные слои деформировались на 10-15 % больше обоих материалов.

- 4. Проведена термообработка слоистого материала. В результате экзометрической реакции на границе раздела титана и алюминия образовались химические соединения. Исследованы температурные и временные условия образования интерметаллидов.
- Рентгеноструктурный анализ показал, что при всех условиях термообработки в заготовке образовались интерметаллиды Ti_3Al , TiAl и $TiAl_2$, количество которых зависело от температуры и времени выдержки.
- 5. Показано, что механические свойства слоистого материала непосредственно после холодной прокатки изменяются в зависимости от соотношения количества пластин титана и алюминия.

Предложенный технологический поход открывает широкие перспективы для получения листового слоистого материала системы Ti-Al, упрочненного интерметаллидными фазами.

Литература

- 1. *Трыков Ю.П.*, *Гуревич Л.М.*, *Шморгунов В.Г.* Слоистые композиты на основе алюминия и его сплавов. М.: ЗАО «Металлургиздат», 2004. 254 с.
- 2. *Аркулис Г.Э.* Совместная пластическая деформация разных металлов. М.: Металлургия, 1964. 305 с.
- 3. *Король В.К., Гильденгорн М.С.* Основы технологии производства многослойных металлов. М.: Металлургия, 1970. 280 с.
- 4. *Кобелев А.Г., Лысак В.И. и др.* Материаловедение и технология композиционных материалов: Учебник для вузов. М.: Интермет инжиниринг, 2006. 368 с.
- 5. *Nishiyama Y., Miyashita T., Isobe S. and Noda T.* // Proc. Joint ASM/TMS. Symp. On «High temperature aluminides and intermetallics (ed.S. H. Whang et al), Warrendale, PA, TMS, 1990. P. 557.