УДК 541.138.2

ИССЛЕДОВАНИЕ СТРУКТУРЫ И СВОЙСТВ ИЗНОСОСТОЙКИХ ПОКРЫТИЙ, ПОЛУЧЕННЫХ МЕТОДОМ МДО НА СПЛАВАХ СИСТЕМ Al-Ca-Sc.

Макушина Марина Александровна, студент 4 курса, кафедра «Материаловедение» Московский государственный технический университет им. Н. Э. Баумана Научный руководитель: Е.А. Наумова,

научный руковооитель: Е.А. наумова, кандидат технических наук, доцент кафедры «Материаловедение»

Большое значение для снижения удельной материалоемкости изделий имеет замена черных металлов более легкими цветными, в частности алюминием и его сплавами. Хотя алюминий и дороже стали, однако экономия по массе при его использовании достигает 60%. Поэтому алюминиевые конструкции могут быть дешевле стальных. Кроме снижения материалоемкости большое значение имеет уменьшение трудоемкости изготовления деталей из алюминиевых сплавов, так как обрабатывать и монтировать их намного легче стальных.

Однако расширению сферы практического использования алюминиевых сплавов для изготовления корпусных деталей и разнообразных пар трения препятствует несоответствие высоким технологическим требованиям таких его эксплуатационных характеристик, как недостаточная твердость и низкая износостойкость. Устранение этих недостатков связано с улучшением состава и качества поверхностных слоев изделий, а также с возможностью применения современных методов поверхностной обработки алюминия.

Одним из наиболее перспективных методов нанесения покрытий на изделия и конструкции из алюминиевых и магниевых сплавов является метод микродугового оксидирования (МДО).

Микродуговое оксидирование - сложный процесс получения покрытий на поверхности материала - рабочего электрода, находящегося в электролите, в режиме микродуговых разрядов, перемещающихся по его поверхности [1]. Процесс МДО состоит из нескольких стадий, протекающих последовательно: 1) анодирование и/или электролиз; 2) искрение; 3) собственно МДО; 4) дуговая стадия [2, 3].

Силумины (сплавы на основе алюминиево-кремниевой эвтектики) самые распространенные среди всех литейных сплавов на основе цветных металлов. Благодаря отличным литейным свойствам они широко используются для получения отливок самой сложной формы [4, 5]. Но резервы повышения их прочностных свойств практически исчерпаны, что вытекает из принципов их легирования [4]. В связи с этим, поиск альтернативных базовых систем, которые могут стать основой литейных сплавов нового поколения весьма актуален. Система Al-Ca рассматривается авторами этой работы как перспективная. Кальций, как и кремний, образует с алюминием диаграмму эвтектического типа, но структура эвтектики значительно дисперснее, чем кремниевая в литом состоянии, что должно обеспечить более высокие прочностные свойства этих сплавов.

Проведенные авторами этой работы испытания на износостойкость силумина и сплава с кальцием без покрытия показали некоторое преимущество последнего. Коэффициент трения на установившейся стадии работы у АК7 около 0,47, а у сплава на базе системы Al-Ca —около 0,45 (испытания проводили на трибометре NANOVEA с использованием вращающегося по круговой траектории стального шарика (ШХ15) диаметром 6 мм при нагрузке 10H).

В данной работе были исследованы образцы нового литейного эвтектического сплава Al-7,5%Ca-0,3%Sc (№ 1-3), эвтектического силумина AK12 (№ 4) и доэвтектического силумина AK7 (№ 5) с покрытием, полученным методом МДО с использованием разных электролитов:

 $NaOH-TЖC-K_4[Fe(ON)_6]$ и NaOH-TЖC. В результате проведенного исследования установлено, что сплав Al-7,5%Ca-0,3%Sc покрывается оксидом алюминия примерно в 3 раза быстрее, чем силумины.

Микроструктуру изучали с помощью светового микроскопа Olympus GX51. С помощью специальной компьютерной программы SIAMS 700 и встроенной фотокамеры были сделаны фотографии структуры. Для измерения микротвердости используется прибор Emkotest DuraScan 70. Толщину поверхностных слоев измеряли перемещением предметного столика с помощью микровинтов с цифровой шкалой.

Фазовый состав поверхностных слоев определяли методом рентгеноструктурного анализа методом симметричной съемки и съемки скользящим пучком.

Металлографическое исследование показало, что покрытие на всех образцах состоит из двух основных слоев. Внешний слой, более темный, имеет более высокую твердость. Вероятно, он в большей степени состоит из α -Al $_2$ O $_3$, а внутренний слой, более мягкий и пластичный, состоит из смеси разных модификаций оксида алюминия. Значения микротвердости исследованных сплавов представлены в таблице 1.

Таблица 1. Твердость материала образца и покрытия (метод измерения НУ С						
Наименование слоя	Образец №1	Образец №2	Образец№ 3	Образец №4	Образец№ 5	
	(NаОН-ТЖС)	(NаОН-ТЖС-	(NаОН-ТЖС-	(NаОН-ТЖС)	(NаОН-ТЖС)	
		$K_4[Fe(ON)_6])$	$K_4[Fe(ON)_6])$		·	
Материал образца	70,9	96,9	69,4	71,5	85,6	
Внутренний слой	718	240	351	467	715	
$(\gamma - Al_2O_3 + \alpha - Al_2O_{3+}$						
δ -Al ₂ O ₃)						
Внешний слой	1062	712	731	1453	1031	
$(\alpha-Al_2O_3)$						

Таблица 1. Твердость материала образца и покрытия (метод измерения HV 0,1)

Заключение

Установлено, что доля слоя α -Al₂O₃ по отношению к общей толщине покрытия наибольшая в образцах сплава Al-7,5%Ca-0,3%Sc, обработанных в электролите NaOH-ТЖС- K₄[Fe(ON)₆] (№ 3, 4), а значения микротвердости внешнего слоя наименьшие. Возможно, необходимо оптимизировать толщину внешнего слоя, состоящего, в основном из α -Al₂O₃.

Литература.

- 1. *Хла Мо*. Оптимизация процесса микродугового оксидирования алюминиевых и магниевых сплавов/ Автореферат диссертации, 2007 / информация на сайте http://tekhnosfera.com/
- 2. *L.L. Gruss, W. McNeil*. Anodic spark reaction products in aluminate, tungstate and silicate solutions // Electrochem. Technol. 1963. Vol. 1. № 9-10. P. 283-287.
- 3. *А.В. Николаев, Г.А. Марков, Б.Н. Пищевицкий*. Новое явление в электролизе // Изв. СО АН СССР. Сер. хим. наук. 1977. Вып. 5. С. 32-33.
- 4. Энтони У.У., Элиот Ф.Р., Болл М.Д.Алюминий. Свойства и физическое металловедение: Справоч. изд. / под ред. Дж.Е. Хэтча. Пер. с англ. М., Металлургия, 1989, 324 с.
- 5. Золоторевский В.С., Белов Н.А. Металловедение литейных алюминиевых сплавов М.: МИСиС, 2005, 376 с.