УДК 621.793.182

ВЛИЯНИЕ КОНТАКТА МЕЖДУ ТИГЛЕМ И КАТОДОМ МАГНЕТРОННОЙ РАСПЫЛИТЕЛЬНОЙ СИСТЕМЫ С ЖИДКОЙ МИШЕНЬЮ НМСА-52 НА ВАХ ПРОЦЕССА

Мария Владимировна Макарова $^{(1)}$, Денис Дмитриевич Васильев $^{(2)}$

Студент 4 курса ⁽¹⁾, аспирант 1 года ⁽²⁾, кафедра «Электронные технологии в машиностроении» Московский государственный технический университет им. Н.Э. Баумана

Научный руководитель: К.М. Моисеев, кандидат технических наук, доцент кафедры «Электронные технологии в машиностроении»

Введение

Одним из способов нанесения покрытий является метод ионного распыления в магнетронных системах с жидкой мишенью. Этот метод отличается высокой скоростью осаждения, которая на порядок выше, чем у магнетронов с твердой мишенью, высокой энергетической эффективностью, а также высокими показателями чистоты и адгезии [1], [2].

В отличие от обычного магнетрона, в жидкофазном магнетроне в качестве мишени используется металл в тигле, изолированный от системы охлаждения и нагреваемый до температуры плавления под воздействием ионов плазмы. Скорость осаждения в данном случае складывается из двух факторов: испарения и распыления. При высоких температурах процесс испарения становится доминирующим. Энергию, идущую на нагрев мишени, не нужно отводить из катодного узла системой охлаждения, что позволяет значительно увеличить мощность, вкладываемую в разряд [2].

Для реализации данного метода нанесения на вакуумной установке МВТУ-11-1 в лаборатории кафедры «Электронные технологии в машиностроении» МГТУ им. Н.Э. Баумана совместно с ОАО «НИИТМ» разработан и изготовлен жидкофазный магнетрон НМСА-52.

Однако в процессе выведения магнетрон HMCA-52 на жидкофазный режим возникли проблемы с его достижением. В ходе поиска возможных вариантов решений было предположено, что достаточная мощность для плавления мишени не может быть передана из-за отсутствия хорошего контакта с поверхностью магнетрона. Целью данной работы являет выявление различных вариантов контакта, проведение экспериментов по запуску магнетрона HMCA-52 с ними, а также выявление оптимального варианта, который будет обеспечивать передачу наибольшей мощности.

1. Описание оборудования

Для проведения экспериментов был использован жидкофазный магнетрон HMCA-52 с удлиненным фланцем, представленный на рисунке 1.

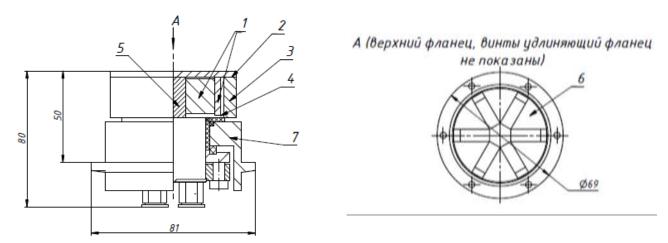
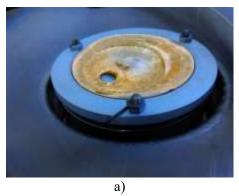


Рис. 1. Жидкофазный магнетрон HMCA-52с удлиненным фланцем: 1 – магниты; 2 – верхний фланец; 3 – корпус; 4 – система охлаждения; 5 – магнитопровод; 6 – изолятор; 7 – удлиняющий фланец

Эксперименты проводились на установке МВТУ-11-1, представленной на рисунке 2.

Рис. 2. Установка МВТУ-11-1: 1 — датчик вакуума широкодиапазонный; 2 — ввод вращения подложкодержателя; 3 — подложкодержатель; 4 — вакуумная камера; 5 — заслонка; 6 — магнетрон; 7 — источник ионов; 8 — электронно-лучевой испаритель; 9 — ввод вращения заслонки; 10 — турбомолекулярный насос; 11 — порт напуска газа

Жидкофазный магнетрон НМСА-52 смонтирован на позиции 6.


2. Проведение экспериментов

Жидкофазный магнетрон HMCA-52 с удлиненным фланцем установлен в установке MBTУ-11-1 в полной конфигурации, а именно: медная мишень помещена в тигель, который установлен на магнетрон с зазором. Передачу потенциала с поверхности магнетрона на тигель осуществляется с помощью специального контакта. Нами предложены четыре различных варинта:

- 1. Контакт осуществляется через конические винты, изготовленные из нержавеющей стали. Форма винтов выбрана с точки уменьшения теплоотвода от мишени, так как при винтах, вкручивающихся в корпус, происходит сильный теплоотвод;
- 2. Контакт осуществляется через конические винты, изготовленные из нержавеющей стали с дополнительным контактом через вольфрамовую проволоку, установленную сбоку. Вольфрам выбран, так как он обладает тугоплавкостью, что позволит контакту выдержать момент плавления мишени, а также является хорошим проводником, что важно при передачи потенциала (рис. 3, а);

- 3. Контакт осуществляется через конические винты, изготовленные из нержавеющей стали с дополнительным контактом через танталовую фольгу, сложенную в несколько раз, для увеличения ее толщины, установленную поцентру поверхности магнетрона (между тиглем и магнетроном). Танталовая фольга выбрана с точки зрения увеличения площади контакта, а именно площади поперечного сечения проводника, через который осуществляется контакт. Тантал в свою очередь является тугоплавким материалом и не плохим проводником;
- 4. Полная замена конических винтов из нержавеющей стали на кусочки вольфрамовой проволоки, толщиной 0,8 мм (рис. 3, б).

Измеренные значения приведены в таблице 1, графики сравнения приведены на рисунках 4, 5.

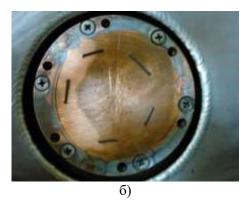


Рис. 3. Варианты контакта: а) – Стандартный контакт с дополнительным контактом через вольфрамовую проволоку, установленную сбоку; б) – Полная замена стандартного контакта на кусочки вольфрамовой проволоки, толщиной 0,8 мм

Таблица 1 – Измеренные значения тока и мощности при регулировке по опорному напряжению

таолица т измеренные значения тока и мощности при регулировке по опорному напряж									ірижению
	Вариант контакта	1		2		3		4	
$N_{\underline{0}}$	Q, л/ч	0,78		0,68		0,728		0,707	
	Р, Па	0,78		0.77		0,78		0,78	
	U	І, мА	P, BT	І, мА	Р, Вт	І, мА	P, B _T	І, мА	P, BT
1	300	75	22	68	20	64	19	75	22
2	350	101	36	111	39	85	32	107	37
3	400	150	61	170	68	157	63	183	74
4	450	225	100	260	119	233	106	300	133
5	500	280	138	346	171	295	147	416	208
6	550	332	173	375	208	315	171	500	267
7	600	340	200	378	224	314	188	570	341
8	650	311	198	375	240	311	201	608	388
9	700	283	200	368	254	311	216	611	427
10	750	291	218	349	263	300	225	582	436
11	800	288	226	329	262	285	228	535	424

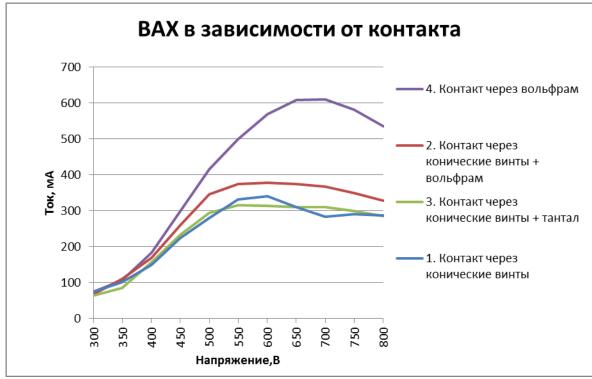


Рис. 4. Сравнение ВАХ при различных вариантах контакта

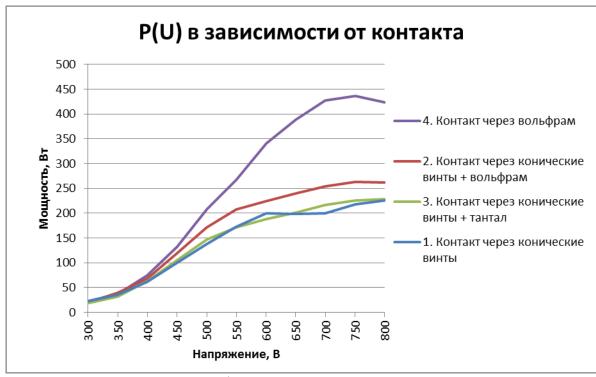


Рис. 5. Сравнение графиков P(U) при заличных вариантах контакта

Заключение

Из проведенных экспериментов видно, что материал контакта и площадь контактирующей поверхности оказывает значительное влияние на передаваемую мощность. При полной замене нержавеющей стали на вольфрам видно, что максимально передаваемая мощность увеличилась более чем в 1,5 раза. Контакт, осуществленный с помощью конических винтов, изготовленных из нержавеющей стали, значительно проигрывает контакту из вольфрама.

Литература

- 1. Магнетронные распылительные системы / А. И. Кузьмичев М.: Из-во «Аверс», 2008
- 2. Исследование энергопотребления диодных распылительных систем с твердым и жидким катодом / *Войнов Р.Ю., Третьяков Р.С., Талаева Ю.С.* Томский политехнический университет, 2009