УДК 669.018.9:621.791.18:621.771

РАЗРАБОТКА СЛОИСТОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА ТИТАН-АЛЮМИНИЙ, УПРОЧНЕННОГО ИНТЕРМЕТАЛЛИДАМИ

Сергей Эдуардович Куркин

Магистр 1 года Кафедра «Материаловедение» Московский государственный технический университет им. Н.Э.Баумана

Научный руководитель: Ю.А. Курганова, доктор технических наук, профессор кафедры «Материаловедение»

<u>Ключевые слова:</u> прокатка (rolling), диффузионная сварка (diffusion welding), интерметаллид (intermetallic compound), алюминид титана (titanium aluminide).

Аннотация: В данной статье представлена технология получения слоистого композиционного материала системы титан-алюминий, включающая операции сборки многослойных пакетов, вакуумной прокатки при диффузионной сварке, раскатки пакетов до нужной толщины слоев (вплоть до 100 нм) и последующей термообработки для формирования интерметаллидных включений в объеме заготовки. Рассмотрена зависимость механических свойств материала от соотношения слоев титана и алюминия. Также представлены данные о влиянии таких технологических параметров, как температура отжига и продолжительность выдержки на количество интерметаллидных фаз в материале.

В данной работе предложена технология получения слоистого композиционного материала системы Ti—A1, упрочненного интерметаллидами, согласно которой вначале диффузионной сваркой при вакуумной прокатке пакета из чередующихся слоев титана и алюминия получают слоистый материал, а затем его нагревают для образования между слоями или по всей толщине листа интерметаллидов, объемная доля которых зависит от исходного соотношения толщин слоев, температуры и времени выдержки.

Основное преимущество разработанной технологии заключается в том, что можно получать материал, упрочненный интерметаллидами Ti-Al (γ -TiAl и α_2 -Ti $_3$ Al) без разрушения самого материла при производстве. При этом любые другие технологические методы (прессование, литье с последующей прокаткой) не позволяют получить настолько тонкие листы по причине чрезвычайной хрупкости интерметаллидов Ti-Al, резко снижающих технологическую деформируемость материала.

Актуальность создания такого композита, обладающего высокой удельной прочностью, жаростойкостью и жаропрочностью, обусловлена возрастающей потребностью аэрокосмической техники в таком материале.

При получении слоистого композита исходными материалами были выбраны технически чистый титан марки BT1-0 и алюминий марки AД1.

В соответствии с требованиями ОСТ 1 90145—74 «Фольга из титановых сплавов» титан поставляется в нагартованном состоянии и по своим пластическим характеристикам заметно уступает алюминию. С целью увеличения пластических характеристик титанового слоя и предотвращения надрывов в процессе прокатки фольгу отжигали при 530 °С в вакууме с последующим медленным охлаждением. Такой смягчающий отжиг также позволил снизить содержание азота и водорода в титане, тем самым дополнительно повышая его пластичность.



Рис.1. Схема получения слоистого материала

На рисунке 1. представлена схема получения материала. Пакеты собирали из титановых карточек размерами $0.1\times50\times100$ мм и алюминиевых пластин размерами $0.02\times50\times100$ мм с различными толщинами и соотношениями слоев: 100/20, 100/40, 100/60, 100/200 мкм. Для предотвращения взаимного смещения слоев передний конец пакета фиксировался с помощью стальных заклепок, а для устранения сдвига слоев валками в направлении прокатки при подаче пакета, а также для получения более равномерной его деформации применяли стальные обкладки толщиной 1 мм (табл. 1). Для получения большего количества данных при меньшем количестве проходов были изготовлены ступенчатые обкладки (рис. 2). Это позволяет за один проход получить 3 разные степени обжатия, от 29 до 67 %. На внутреннюю поверхность защитных стальных полос наносили противосварочную пасту.

Таблица 1. Основные рекомендуемые параметры по сборке пакетов для управления послойной деформацией

Толщина Соотношение толщин		Количество	Толщина стальных
пакета, мм компонентов, Т:М		слоев, шт	обкладок, мм
<10	1:1 - 5:1	До 100	0,5 - 1
>10	1:1 - 2,5:1	До 1000	1 - 3

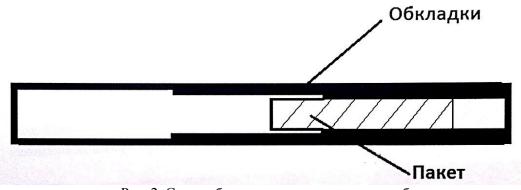


Рис. 2. Схема сборки пакета в ступенчатых обкладках

Для предотвращения окисления слоев, поглощения титаном газов при активном его взаимодействии с атмосферой и обеспечения условий для прочного соединения слоев твердофазную диффузионную сварку прокаткой вели в вакууме (при 0,01 Па) при температурах 450...520°C. Такой температурный режим исключал образование хрупких интерметаллидов между слоями, резко снижающих технологическую пластичность материала, но сохранял достаточную деформируемость. Установлено, что при 470 °C интерметаллиды практически не образуются (их содержание не превышало 0,5 %).

Нагретый до требуемой температуры собранный пакет вначале обжимали на вакуумном двухвалковом прокатном стане ДУО-170 в ИМЕТ РАН (рис. 3), а затем уже сваренные пакеты

раскатывали на воздухе на двухвалковом стане ДУО-300 и четырехвалковом стане КВАТРО $110/320\times300$ при температуре 450 °C.

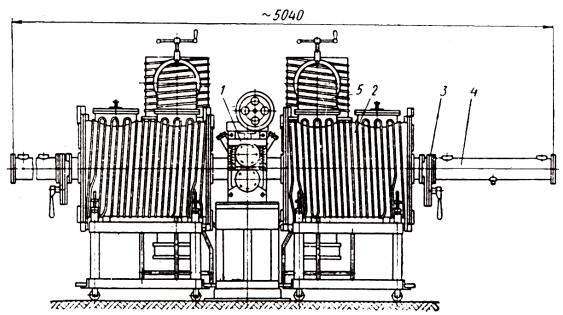


Рис. 3. Вакуумный прокатный стан ДУО-170

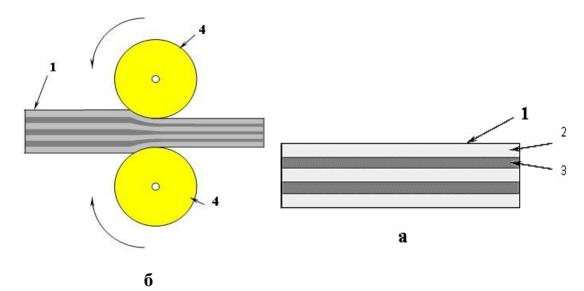


Рис. 4. Схематическое изображение сборки многослойного пакета (а) и его прокатки в валках (б): 1 – многослойный пакет, 2 – Ti, 3 – Al, 4 – вращающиеся валки [1]

Установлено, что при прокатке пакета (рис. 4) на первом проходе при диффузионной сварке оптимальной является степень деформации 25...40 %, а при последующей раскатке сваренных слоев 8...10 % за проход (табл. 2).

Сваренный в вакууме пакет раскатывали на воздухе при температуре 450...500 °C. Сначала полосу разрезали на пластины длиной 120 мм и вновь собирали пакет, который прокатывали вначале в вакууме, а затем раскатывали на воздухе. В результате повторения таких циклов в конечном итоге получили полосу толщиной 0,35 мм с 4800 слоями. При этом средняя толщина титанового слоя составила 100...120 нм, а алюминиевого – 80...90 нм (рис.5).

T ~	T)		
Таблина 2	Резупьтать	і вакуумной	прокатки
т иолици 2.	I CS y MDIGID	i bait y y milion	iipokaikii

	1			
Номер	Кол-во слоев	Исходная	Толщина после	Степень деформации
пакета	(соотношение)	толщина,	прокатки в вакууме	при прокатке в
Пакета		MM.	при t=500°C, мм.	вакууме, %
1	19Al+20Ti(1:1)	4,5	2,5	44
2	19Al+20Ti(1:1)	4,2	2,1	50
3	19Al+20Ti(1:1)	4,3	2,2	50
4	19Al+20Ti(1:5)	11	6	45
5-1	20Al+40Ti(1:2)	8,5	6,8	20
5-2	20Al+40Ti(1:2)	8,5	6,4	25
6-1	40Al+20Ti(2:1)	7,8	5,5	30
6-2	40Al+20Ti(2:1)	8,2	6,2	24
7	29Al+30Ti(1:1)	7,2	2,5	65
5-01	20Al+10Ti(2,5:1)	7	2,7;3,8;4,9	61;45;30
5-02	50Al+5Ti(2:1)	7	2,5;4,5;5,2	64;35;26
5-03	35Al+7Ti(1:1)	7,5	3,1;5,0;5,3	58;33;30

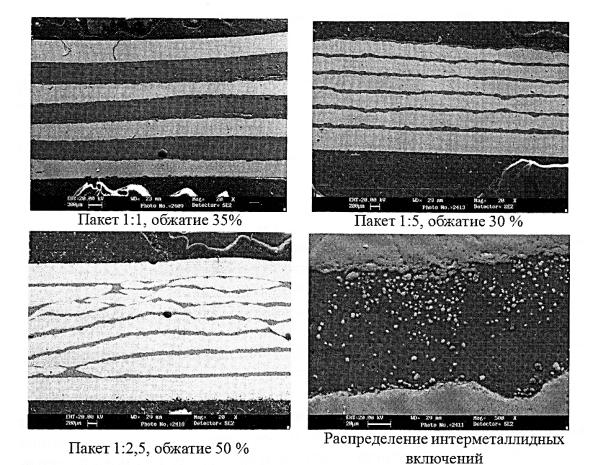


Рис. 5. Поперечное сечение образцов Ti-Al CKM

При пакетной прокатке наблюдается значительная неравномерность деформации титанового и алюминиевого слоев [2, 6]. Слои из алюминия, как и следовало ожидать, деформировались в большей степени на 25...30 %, чем слои из титана. Поскольку между

слоями титана и алюминия произошла адгезия, то в результате большей вытяжки алюминиевого слоя, была нарушена сплошность слоя титана. При этом разрывы титанового слоя носят периодический характер, связанный с накоплением деформации до критического значения. При прокатке пакета до толщины 0,4 мм в большей степени деформируются приповерхностные слои, как видно из рисунка 6.

Степень деформации в этих слоях не превышала в среднем 50...60 %, в то время как в центральных слоях она составляла в среднем 35...45 %. Такую особенность обжатия слоев необходимо учитывать при формировании пакета. Таким образом, изменяя толщину исходного пакета, можно получить слоистый материал с различными служебными характеристиками, что расширяет области применения получаемого слоистого материала.

Рис. 6. Структура слоистого материала системы АІ-Ті после прокатки с обжатием 96 %

Степень нагартованности составляющих пакета оценивали по изменению микротвердости слоев титана и алюминия. Данные измерения микротвердости приведены в таблице 3.

При увеличении обжатия слоистой заготовки с 45 до 98 % микротвердость титановых слоев практически не изменилась, тогда как у алюминиевых она увеличилась на 30...40 %.

таолица 3. Микротвердость в слоях титана и алюминия обра-				
Микротвердость, при р			при разной т	голщине
Номер	Номер образцов, МПа			
измерения	2,4 мм (об	бжатие 42%)	0,4 мм (обжатие 98%)	
	Ti	Al	Ti	Al
1	1803,2	539	1744,4	695,8
2	2009	607,6	1999,2	686
3	1871,8	558,6	1920,8	666,4
4	1999,2	529,2	1783,6	686
5	1842,4	568,4	1724,8	676,2
6	1950,2	578,2	1842,4	705,6

Таблица 3. Микротвердость в слоях титана и алюминия образцов разной толщины

Соотношение слоев оказывает существенное влияние на прочностные и пластические свойства материала. Механические испытания показывают, что увеличение доли слоев алюминия в пакете приводит к повышению прочности и снижению пластичности композита. Это объясняется активным образованием интерметаллидов по границам раздела Ti—A1. В целом механические свойства слоистого материала значительно выше, чем у монолитного алюминия, но ниже, чем у монолитного титана. Это можно объяснить нарушением сплошности титанового слоя. Характер разрушения образцов был хрупким.

Для образования интерметаллидов, обладающих высокой удельной прочностью, жаропрочностью и жаростойкостью полученные ранее сваренные и раскатные до нужной толщины пакеты подвергались отжигу при разной температуре (510...1100 °C).

В результате экзотермической реакции на границе раздела «титан-алюминий» образовывались интерметаллические фазы.

Рентгеноструктурный анализ слоистого материала показал, что после деформации образуется в совокупности до 4...6 % интерметаллидов Ti_3AI , TiAl и $TiAl_2$. Это связано, очевидно, с локальным разогревом материала свыше 500 °C при деформации [3]. Указанные интерметаллиды присутствуют в материале после любой термообработки.

Следует заметить, что при соотношении толщины слоев Ti/Al 100/50 мкм было образовано подавляющее количество интерметаллида γ-TiAl.

Ввиду того что, материал был слоистым, распределение интерметаллидов в объеме заготовки после термообработки было практически равномерным и изменялось в зависимости от температурных и временных условий в пределах от 16 до 97 %. Толщина диффузионной зоны составляла 20...30 нм. Таким образом, процесс образования интерметаллидов в слоистом материале является управляемым и в зависимости от требуемых свойств можно создать необходимую объемную долю интерметаллидов, которая и обуславливает механические и функциональные характеристики материала (табл. 4, рис. 7, 8).

Материал	δ, %	σ0,2 , МПа	σ, МПа
Ti-Al 1/1	8,2	161	198
Ti-Al 1/2	4,4	248	297
Ti (BT1-0)	20	245-343	392-539
Al (АД1)	30	30	90

Таблица 4. Механические свойства слоистого и монолитного материалов после прокатки

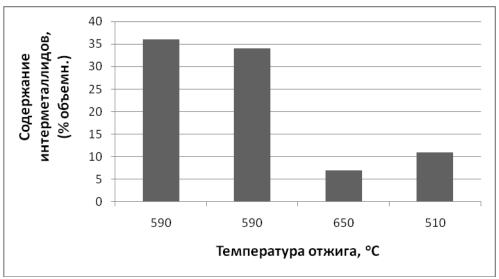


Рис. 7. Диаграмма зависимости содержания интерметаллидов Ti-Al от температуры отжига (соотношение слоев Ti-Al (1:1))

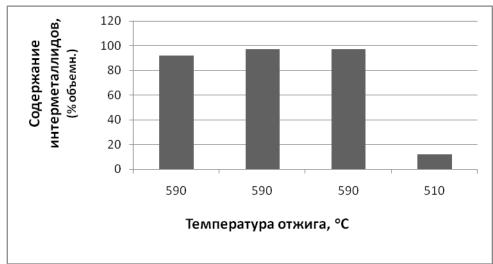


Рис. 8. Диаграмма зависимости содержания интерметаллидов Ti-Al от температуры отжига (соотношение слоев Ti-Al (1:2))

Выводы.

- 1. Выявлены особенности прокатки СКМ из разнородных металлов и особенности их пластической деформации. Установлено, что слои из алюминия получили деформацию на 25...30 % больше, чем слои из титана, что привело к шейкообразованию титанового слоя и, следовательно, к нарушению его сплошности. Приповерхностные слои продеформировались на 10...15 % больше у обоих материалов.
- 2. Оптимальная температура при деформации 470 °C и обжатие >30 % за проход позволяют обеспечить диффузионную сварку слоев Ті и АІ при вакуумной прокатке, а также предотвратить образование интерметаллидных фаз в композите, что значительно улучшает механические свойства СКМ.
- 3. Установлено влияние соотношения слоев на свойства композита. Можно получать КМ с различным набором свойств, изменяя соотношения толщин Ті и Аl и управляя неравномерностью деформации. Увеличение количества слоев алюминия, приводит к увеличению прочности и снижению пластичности за счет увеличения количества интерметаллидов в КМ.
- 4. Выбрано рациональное соотношение толщин слоев титана и алюминия (100/50 мкм), которое при последующей высокотемпературной обработке обеспечивает преимущественное образование в композите γ-TiAl.

Предложенный технологический подход открывает широкие перспективы для получения слоистого композиционного материала системы Ti-Al, упрочненного интерметаллидными фазами.

Литература

- 1. Иванов Д.А., Ситников А.И., Шляпин С.Д. Дисперсно-упрочненные, волокнистые и слоистые неорганические композиционные материалы: Учебное пособие. М.: Изд-во МАТИ-РГТУ им. К.Э. Циолковского, 2009.-306 с.
- 2. *Аркулис Г.Э.* Совместная пластическая деформация разных металлов. М.: Металлургия, 1964. 305 с.
- 3. *Трыков Ю.П., Гуревич Л.М., Шморгунов В.Г.* Слоистые композиты на основе алюминия и его сплавов. М.: ЗАО «Металлургиздат», 2004. 254 с.
- 4. *Король В.К.*, *Гильденгорн М.С.* Основы технологии производства многослойных металлов. М.: Металлургия, 1970. 280 с.
- 5. *Кобелев А.Г., Лысак В.И.* и др. Материаловедение и технология композиционных материалов: Учебник для вузов. М.: Интермет инжиниринг, 2006. 368 с.

6. *Nishiyama Y., Miyashita T.,Isobe S. and Noda T.* // Proc. Joint ASM/TMS. Symp. On «High temperature aluminides and intermetallics (ed.S. H. Whang et al), Warrendale, PA, TMS, 1990. P. 557. 7. *Kim Y.-W., Froes F.H.* Physical metallurgy of titanium aluminides // Proc.Simp.High-Temperature Aluminides and Intermetallics. TMS, 1990, – P.465.