УДК 620.183

ПРОИЗВОДСТВО ВЫСОКОПРОЧНЫХ ТРУБНЫХ СТАЛЕЙ

Ирина Владимировна Лёвина ⁽¹⁾, Анна Владимировна Малютина ⁽²⁾

Студент 4 курса ⁽¹⁾, студент 4 курса ⁽²⁾, кафедра «Оборудование и технологии прокатки» Московский государственный технический университет им. Н. Э. Баумана

Научный руководитель: Т. Ю. Комкова, кандидат технических наук, доцент кафедры «Оборудование и технологии прокатки»

В последние десятилетия в России для быстрой и экономичной транспортировки углеводородного сырья реализованы и продолжают реализовываться проекты по строительству трубопроводов. Условия их эксплуатации предъявляют высокие требования к качеству труб, которые включают следующие показатели, варьируемые в зависимости от параметров, назначения и степени ответственности газопроводов: временное сопротивление; предел текучести; относительное удлинение; твердость HV; ударная вязкость и другие. С повышением параметров и усложнением условий эксплуатации трубопроводов значения перечисленных выше характеристик возрастают.

Таблица 1. Основные требования к механическим свойствам листового проката

Класс	$\sigma_{\rm B},{\rm H/mm^2}$	$\sigma_{\rm T},{\rm H/mm^2}$	δ%,не	КСV при –	ИПГ при –20
прочности			менее	20°С, Дж/см ² ,	°C, %,
				не менее	не менее
K50	490 – 590	375 - 475	22 - 23	100 - 120	70 – 90
K52	510 - 610	410 - 510	22 - 23	100 - 120	70 – 90
K54	530 - 630	420 - 520	22 - 23	100 - 120	70 – 90
K55	540 - 640	440 – 540	22 - 23	100 - 120	70 – 90
К56	550 - 650	450 – 550	22 - 23	100 - 120	70 – 90
(X65)					
К60	590 - 690	490 – 590	22 - 23	100 - 120	90
(X70)					
К65	640 - 750	570 – 670	20	100 - 120	90
(X80)					
X100	760 – 860	720 - 820	-	100 - 120	90
X120	860 – 960	≥915	-	100 – 120	90

Целью данной работы является знакомство с новыми подходами к производству трубных марок сталей и анализ их физико-механических свойств. Далее в работе рассматриваются новые технологии, позволяющие получить трубы с нужными свойствами. Достижение указанных высоких требований возможно лишь при переходе от традиционной, для трубных сталей контролируемой прокатки феррито-перлитной структуры к более мелкой феррито-бейнитной структуре.

Сегодня сталь класса прочности X80 уже производится многими металлургическими компаниями. Следующий шаг — сталь класса прочности X100 (хотя существует и X90). Разработка стали X100 в целом основана на концепции производства стали X80 с повышенным содержанием молибдена, никеля и меди, т.е. элементов, задерживающих (γ - α)-превращение и повышающих прокаливаемость стали, и другим режимом ускоренного охлаждения. При переходе от стали состава X80 к стали X100 ферритно-бейнитная структура должна измениться практически на полностью

бейнитную. Исследование структуры и свойств показало, что высокопрочные трубные стали имеют склонность к отпускной хрупкости.

Первый опыт применения труб из сталей класса прочности X80 показал, что строительство из труб класса прочности X80-X100 экономически оправдано. Особенно эффективно изготовлять из таких сталей трубы для строительства протяженных трубопроводов высокого давления ($10-15\ M\Pi a$).

Литература

- 1. *Соколова О.В., Лепестов А.Е., Моисеев А.А.* Пути расширения технических возможностей оборудования для производства труб нефтегазового сортамента методом валковой формовки Производство проката. 2014. № 4. С. 28-30.
- 2. Интернет-ресурс http://uran.donntu.org/~masters/2012/fmf/kolodyazhnaya/library/morozov.pdf