УДК 621.383.811

ВЫЯВЛЕНИЕ ПУТЕЙ УВЕЛИЧЕНИЯ СВЕТООТДАЧИ ЭКРАННОГО УЗЛА ЭЛЕКТРОННО-ОПТИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ

Данила Дмитриевич Зыков

Студент 4 курса, бакалавриат кафедра «Электронные технологии в машиностроении» Московский государственный технический университет им. Н.Э. Баумана

Научный руководитель: К.М. Моисеев, кандидат технических наук, доцент кафедры «Электронные технологии в машиностроении»

Зрение позволяет человеку получать наибольшую информацию о событиях, происходящих вокруг него. Поэтому затрачиваются огромные усилия, чтобы расширить эти возможности. Вне сферы нашего восприятия остаются объекты, изображение которых лежит в рентгеновской, ультрафиолетовой и инфракрасной областях спектра.

Задачи преобразования спектрального диапазона, усиления яркости или сверхбыстрой регистрации изображения решаются с помощью электронно-оптических преобразователей (ЭОП).

ЭОП представляет собой электровакуумную колбу, внутри которой размещены фотокатод, люминесцентный экран, фокусирующая и ускоряющая электронно-оптические системы. Характеристики и параметры ЭОП зависят от используемых в них фотокатодов и экранных узлов [1].

Наряду с фотокатодом, катодолюминесцентный экран определяет основные функции ЭОП: преобразование спектра и усиление яркости изображения. Кроме того, экран ЭОП определяет качество изображения в тех наиболее часто встречающихся случаях, когда разрешающая способность ЭОП ограничивается разрешающей способностью экрана [2]. Экранный узел состоит из волоконно-оптической пластины (ВОП) и последовательно нанесенных покрытий. Существует два пути увеличения светоотдачи экранного узла: увеличение ускоряющего напряжения и изменение количества слоев люминофора.

Целью работы является выявление путей увеличения светоотдачи экранного узла и исследование зависимости светоотдачи ЭОП от входных параметров.

Процесс формирования экрана начинается с формирования адгезионного покрытия (адгезива) в виде тонкой пленки на чистую подложку (ВОП). Адгезив представляет собой раствор акриловых смол в различных типах растворителей.

На поверхность ВОП с помощь специальной щетки и дозатора типа «солонка» осуществляется нанесение люминофора. На экранный узел рассыпается ровным слоем порошок люминофора. Узел поворачивается вокруг оси с помощью шагового электродвигателя и при этом осуществляется втирание люминофора.

В ходе проведения измерения светоотдачи экранного узла при различных значения ускоряющего напряжения, подаваемого между катодным и экранным узлом, и количества слоев люминофора была получены данные, представленные в таблице 1.

Таблица 1. Зависимость светоотдачи экранного узла от ускоряющего напряжения и количества слоев люминофора

Lл,			•	
ШТ	1	2	2	5
Uун ,	1	2	3	3
В				
6000	1,67	1,65	1,63	1,2
8000	3,97	3,87	3,85	3,25
9000	5,35	5,32	5,89	4,35
10000	3,38	3,31	3,28	2,75

Составлена математическая модель светоотдачи экранного узла:

$$\hat{Y} = 1.7 + 0.594X1 + 0.123X2 + 0.131X1X2,$$

где $X1 -$ ускоряющее напряжение;
 $X2 -$ количество слоев люминофора

Выводы

- 1. Выявлено, что светоотдача экрана в большей степени зависит от ускоряющего напряжения, подаваемого на катодный и экранный узел (коэффициент при X1 равен 0,594), но также зависит от количества слоев люминофора (коэффициент при X2 равен 0,123). И при этом присутствует взаимное действие двух факторов (коэффициент при X1X2 равен 0,131).
- 2. Определены оптимальные входные параметры ускоряющего напряжения, марки и количества слоев люминофора для получения максимальной светоотдачи экранного узла:
 - а. При подаче ускоряющего напряжения 9 кВ наблюдается максимум светоотдачи (6,0 отн.ед.);
 - b. При этом выявлено, что максимальное значение светоотдачи получается при нанесении люминофора в диапазоне 1-2 слоя, толщиной не менее 10 мк.

Литература

- 1. *Берковский А.Г., Гаванин В.А., Зайдель И.Н.* Вакуумные фотоэлектронные приборы. М., «Энергия», 1976, с.344.
- 2. Зайдель И.Н., Куренков Г.И. Электронно-оптические преобразователи. М.: Сов. Радио, 1970. С.60.