УДК 620.179.155.1

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ РАДИОГРАФИЧЕСКОГО КОНТРОЛЯ ЛИНЕЙНОГО УСКОРИТЕЛЯ УЭЛР-8-2Д.

Алексей Вадимович Савельев

Студент 6 курса кафедра «Технологии сварки и диагностики» Московский государственный технический университет им.Н.Э.Баумана

Научный руководитель: А.Л. Ремизов, кандидат технических наук, доцент кафедры «Технологии сварки и диагностики»

Цель настоящей работы состоит в изучении вопроса проведения радиографического контроля сварных соединений корпуса ядерного энергетического реактора ВВЭР-1000 при использовании линейного ускорителя электронов. Из-за возможности возникновения дефектов при осуществлении сборочно-сварочных операций деталей корпуса реактора, снижающих срок его службы и увеличивающих вероятность возникновения критических ситуаций, необходимо определить параметры контроля, позволяющие успешно выявлять объемные и плоскостные дефекты.

Изготовление оборудования реактора представляет из себя сложный технологический процесс, включающий в себя различные конструкторские решения. С целью снижения стоимости изготовления корпус изготавливается из перлитной стали 15Х2НМФА, состав которой разработан специально для применения в условиях высокой радиационной нагрузки, плакированный изнутри аустенитной нержавеющей сталью 08Х18Н10Т. Такие факторы, как толщина корпуса, которая составляет 200 мм, а также применение двух сталей с различной структурой ограничивает выбор методов неразрушающего контроля, что и определяет использование ранее выбранного метода контроля.

Радиографический метод накладывает ограничения при проведении контроля на размеры обнаруживаемых дефектов в зависимости от просвечиваемой толщины (см. Таблицу 1).

Таблица 1 - Зависимость минимально обнаруживаемых дефектов от толщины контролируемого объекта [1].

Радиационная толщина, мм	Раскрытие (ширина) непровара или трещины, мм
До 40	0,1
Свыше 40 до 100 включительно	0,2
Свыше 100 до 150 включительно	0,3
Свыше 160 до 200 включительно	0,4
Свыше 200	0,6

В работе были изучены основные виды дефектов, встречающиеся при производстве реактора ВВЭР-1000, методы их контроля и оценки качества.

При оценке качества сварных соединений по результатам радиографического контроля не допускаются трещины, непровары, подрезы, несплавления, недопустимые включения, скопления, вогнутость корня шва и превышение проплава. [2]

Данная работа базируется на исследовании уже имеющихся литературных данных с целью проведения сравнительного анализа для обоснованного повышения эффективности выявления дефектов в изделиях в процессе производства.

Литература

- 1. ГОСТ 7512-82. Контроль неразрушающий. Соединения сварные. Радиографический метод. М.: СТАНДАРТИНФОРМ, 2008.-18 с.
- 2. НП-084-15 Правила контроля основного металла, сварных соединений и наплавленных поверхностей при эксплуатации оборудования, трубопроводов и других элементов атомных станций. М.: Издательство Стандартов, 2016.