ИЗУЧЕНИЕ ПРОЦЕССА КОНСОЛИДАЦИИ ПОРОШКОВОЙ СТАЛИ FE-30CR-0,2C ЛЕГИРОВАННОЙ ВОЛЬФРАМОМ

Иван Константинович Гребенников ⁽¹⁾, Студент 4 курса ⁽¹⁾, кафедра «Материаловедение» Московский государственный технический университет

Научный руководитель: С.Ю. Шевченко, кандидат технических наук, доцент кафедры «Материаловедение»

В настоящее время порошковая металлургия является одной из передовых отраслей промышленности. Одним из главных преимуществ этой технологии является получение деталей из металлических порошков, которые могут значительно отличаться по температуре плавления и не сплавляться между собой. В одном порошковом материале можно также совмещать металлы и неметаллы. Вольфрам является дорогим металлом и увеличивает опасность появления труднорастворимых, плохо управляемых карбидов, способствующих охрупчиванию, но добавление вольфрама как легирующего элемента повышает жаропрочность, прокаливаемость и теплостойкость, а также измельчает зерно аустенита и уменьшает склонность сталей к перегреву. Исследования показали, что соединение сталь-вольфрам можно использовать для создания функционально-градиентного материала для первой стенки ядерных реакторах нового поколения [1]. Это позволит решить проблему различия теплофизических свойств вольфрама, использующегося в качестве облицовки, и ферритной стали, которая используется в качестве конструкционного материала.

Целью данной работы была оценка влияния W на технологические и физикомеханические свойства легированной хромистой стали Fe-30Cr-0,2C при горячем прессовании.

Шихтовая заготовка была получена из порошковой стали Fe-30Cr-0,2C фракции 71+40 мкм, дополнительно легированной 1, 5 и 10 % W фракции менее 15 мкм. Для получения смеси использовали смеситель типа «пьяная бочка» марки Турбула (Вибротек, Санкт-Петербург). Время смешения составило 320 минут.

Перед обжигом из приготовленной шихты методом полусухого прессования формовали образцы в виде дисков диаметром 25 мм. Затем отформованные заготовки обжигали методом горячего прессования при температуре 1050 °C с изотермической выдержкой 15 минут в вакууме с максимальным удельным давлением 30 МПа. Обжиги проводили в печи горячего прессования Thermal Technology Inc. HP20-3560-20 с графитовым нагревателем. Анализ твердости выполняли на твердомере Роквелла по шкале HRA. Для измерения твердости выполнили по 3 укола алмазным конусом на торце и на боковой поверхности образцов. Измерение усадки производилось помощью штангенциркуля ШЦ-1. Замер плотности выполняли методом гидростатического взвешивания, а теоретическую плотность вычисляли, исходя из правила аддитивности. Физико-механические свойства полученных материалов приведены в таблице. Измерение механических свойств выполняли по ГОСТ 25.503-97. Диаграммы сжатия образцов приведены на рисунке.

Анализ полученных результатов показывает, что с увеличением содержания вольфрама величина усадки не изменяется, а показатели твёрдости и микротвёрдости увеличиваются. Как и предполагалось, прочность образцов также повысилась с увеличением содержания тугоплавкого элемента. Различие теоретической и практической плотности объясняется наличием пор в материале, которые образовались при горячем прессовании.

Автор выражает благодарность чл.-корр., д.т.н. Колмакову А. Г., к.т.н. Иванникову А. Ю. и к.т.н. Лысенкову А. С. за помощь в подготовке научного исследования.

Таблица. Зависимость	свойств с	тали Fe-	30Cr-0,2C	от соде	ржания	вольфрама

W, %	Усадка, %	Твёрдость на торце, HRA	Твёрдость на бок. поверхности, HRA	Микротвёрдость, HV	Плостность, г/см ³	Плотность теор., г/см ³	σ _{0,2} МПа
1	57,81	56,67±2	54,07±2	227±12	7,487	7,785	461,78
5	57,03	57,17±2	54,93±2	252±12	7,713	8,248	477,41
10	57,34	62,27±2	60,6±2	273±12	8,032	8,827	591,29

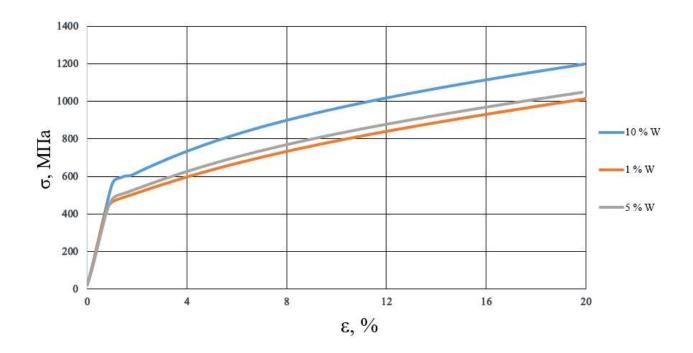


Рис. Диаграммы сжатия стали Fe-30Cr-0,2C от содержания вольфрама

Литература

- 1. S. Heuer, T. Weber, G. Pintsuk, J.W. Coenen, J. Matejicek, C. Linsmeier Aiming at understanding thermo-mechanical loads in the first wall of DEMO: Stress-strain evolution in a Eurofer-tungsten test component featuring a functionally graded interlayer, Fusion Eng. Des. 135 (2018) 141–153.
- 2. А. Г. Колмаков, А. Ю. Иванников, М. А. Каплан, А. А. Кирсанкин, М. А. Севостьянов Коррозионностойкие стали в аддитивном производстве. // Известия высших учебных заведений. Черная металлургия. -2021. -T. 65. -№ 9. -C. 619-650.
- 3. *И. М. Миляев*, *М. И. Алымов*, *И. Н. Буряков* Магнитные гистерезисные свойства порошкового магнитотвердого сплава Fe-25Cr-12Co // Металлы. -2020. -№ 2. C. 63-67.
- 4. *А. С. Лысенков*, Д. Д. Титов, К. А. Ким Свойства 21R-сиалоновой керамики с добавкой оксида самария, полученной горячим прессованием // Журнал неорганической химии. -2021. Т. 66. № 8. С. 1092-1098.