УДК 621.91.01

АВТОМАТИЗИРОВАННОЕ ПРОГНОЗИРОВАНИЕ ВЫХОДНЫХ ХАРАКТЕРИСТИК ТОКАРНОЙ ОБРАБОТКИ МАТЕРИАЛОВ СОВРЕМЕННЫМИ ИНСТРУМЕНТАМИ С ИЗНОСОСТОЙКИМИ ПОКРЫТИЯМИ

Папок Александр Сергеевич

студент 5 курса,

кафедра «Резание материалов, станки и инструменты имени С.С.Силина», Рыбинской авиационной технологической академии имени П.А.Соловьева

Научный руководитель: Козлов В.А. $^{(1)}$, В.В. Маношки $^{(2)}$,

(1) доктор технических наук, профессор кафедры «Резание материалов, станки и инструменты имени. С.С.Силина»;

(2) начальник ОТЛ ОАО «МПО «Сатурн», аспирант кафедры «Резание материалов, станки и инструменты имени С.С.Силина»

машиностроительного производства требует Современный этап развития работников вооружения инженерно-технических промышленных предприятий эффективными автоматизированного проектирования технологических системами процессов, позволяющих оптимизировать анализируемые процессы механической обработки материалов по различным критериям при одновременном обеспечении накладываемых технико-технологических ограничений и повышении рентабельности производства.

К сожалению, существующие отечественные САПР ТП ориентированы преимущественно на *устаревшие* инструментальные материалы (*типа ВК, ТК, Р*), что делает эти системы неприемлемыми для машиностроительного производства, перешедшего на использование высокоэффективных инструментов, оснащенных современными быстросменными твердосплавными режущими пластинами с износостойкими покрытиями.

В тоже время зарубежные производители вышеуказанных инструментальных материалов (например, фирма SANDVIK Coromant и др.), ставшие основными поставщиками данных материалов в нашу страну, усиленно насаждают рекомендации и методологии выбора режимных условий лезвийной обработки, обеспечивающих максимальную производительность выполнения технологической операции, что целесообразно только для металлорежущего оборудования с высокой стоимостью станкоминуты его использования. Однако при осуществлении чистовых операций (для которых, в основном, и приобретается такое оборудование) данные режимные условия обработки не рациональны, т.к. они приводят к значительному усилению интенсивности износа используемого инструмента (и, соответственно, к его перерасходу на единицу изготовляемой продукции), к вибрациям в технологической системе СПИЗ и, как следствие, к снижению точности обработки и характеристик качества формируемого поверхностного слоя изготовляемой продукции.

Нами предлагается усовершенствовать существующее базовое математическое обеспечение отечественных САПР ТП, сделав его приспособленным к современным инструментальным материалам импортного производства с износостойкими инструментальными покрытиями.

С этой целью необходимо, прежде всего, разработать достоверные аналитические зависимости для прогнозирования угла наклона условной плоскости сдвига β_1 (необходимого для расчета силовых, температурных, контактных, износостойких и других основных выходных характеристик процесса резания) применительно к вышеуказанным инструментальным материалам, существенно отличающихся от российских специфическими физико-механическими и теплофизическими свойствами, а

также коэффициентами трения как на передней, так и на задней поверхностях инструмента.

Решить данную задачу можно, используя теоретические зависимости д.т.н. Силина С.С. для расчетного определения составляющих силы резания (P_x, P_y, P_z) при осуществлении процесса лезвийной обработки материалов [1]:

$$\mathbf{P}_{\mathbf{z}} = \tau_{\mathbf{p}} \cdot \mathbf{a}_{1} \cdot \mathbf{b}_{1} \cdot (1/\mathbf{B} + \mathsf{tg} \, \mathbf{c} + \mathbf{M}_{1}); \tag{1}$$

$$P_x = P_{xy} \cdot \cos \eta;$$
 (2) $P_y = P_{xy} \cdot \sin \eta;$ (3)

$$P_{xy} = \tau_{p} \cdot a_{1} \cdot b_{1} \cdot (\operatorname{tg} c / \mathbf{B} - 1 + M_{2}); \tag{4}$$

$$M_1 = 0.78 \cdot E \cdot [(\mathbf{B} / \sin \alpha_{\pi})^{0.5} + 0.4 \cdot H], \qquad M_2 = M_1 / \mu_1,$$

где $E = \rho_1/a_1$; $H = h_3/\rho_1$; $B = tg \beta_1$ – безразмерные критерии подобия, характеризующие анализируемые условия осуществления процесса резания;

 P_{xy} — результирующая составляющих силы резания P_x и P_y , H;

- η угол схода стружки в анализируемых условиях обработки (*определяется по аналитическому выражению*, *представленному в работе* [1]), ... ^o;
- au_p сопротивление обрабатываемого материала пластическому сдвигу в зоне стружкообразования [2], H/mm^2 ;
- a_1, b_1 толщина и ширина среза в анализируемых условиях осуществления процесса резания [1], мм;
 - ρ_1 радиус округления режущей кромки используемого инструмента, мм;
 - с физико-механическая константа обрабатываемого материала, представляющая собой угол наклона силы стружкообразования R_c к условной плоскости сдвига [1], ... °;
 - β_1 угол наклона условной плоскости сдвига, ... °;
 - α значение главного заднего угла режущего инструмента, измеряемого в направлении угла схода стружки, ... °;
 - h_3 износ режущего инструмента по задней поверхности в области его вершины, мм;
 - μ_1 коэффициент трения по задней поверхности инструмента.

Из вышеуказанных аналитических выражений получаем:

$$\begin{split} \mathbf{P_z} &= \ \tau_p \cdot a_1 \cdot b_1 \cdot (1/\ \mathbf{B} + tg\ c + 0.78 \cdot E \cdot [\ (\mathbf{B} / \sin \alpha_{_{\mathcal{I}}})^{0.5} + 0.4 \cdot \mathbf{M}\]\); \qquad (\ 5\); \\ \boldsymbol{\mu_1} &= \left\{\ \tau_p \cdot a_1 \cdot b_1 \cdot 0.78 \cdot E \cdot [\ (\mathbf{B} / \sin \alpha_{_{\mathcal{I}}})^{0.5} + 0.4 \cdot \mathbf{M}\]\right\}\ / \end{split}$$

$$\{ (P_x^2 + P_y^2)^{0.5} - \tau_p \cdot a_1 \cdot b_1 \cdot [tg c / \mathbf{B} - 1] \}.$$
 (6)

Зная величину составляющих силы резания (определяемых экспериментально), по аналитическому выражению (5) путем последовательного перебора на ЭВМ с шагом $0,1^{\circ}$; $0,01^{\circ}$ и $0,001^{\circ}$ численных значений углов наклона условной поверхности сдвига β_1 , можно определить величину этого искомого угла (применительно к анализируем условиям осуществления процесса резания), при котором правая и левая части вышеуказанного выражения (5) будут равны..

Для решения этой задачи была разработана прикладная программа, рабочий фрагмент которой представлен ниже.

По выражению (6) определяется коэффициент трения по задней поверхности инструмента, имеющего износостойкое покрытие.

Проведя многочисленные силовые испытания (на автоматизированной установке) при широком диапазоне изменения технологических условий обработки, в ходе которых замерялись составляющие силы резания с последующим определением по выражениям (5) – (6) соответствующих значений угла наклона условной поверхности сдвига β_1 и коэффициента трения по задней поверхности инструмента μ_1 , был получен массив данных, статистически обработав который авторами были разработаны и предлагаются для практического использования следующие аналитические выражения для расчетного определения параметров β_1 и μ_1 при токарной обработке конструкционных, коррозионно-стойких, жаропрочных и жаростойких сталей, а также жаропрочных сплавов на никелевой основе и титановых сплавов современными режущими пластинами с износостойкими покрытиями (фирм SANDVIK Coromant и ISKAR) как на оптимальных V_0 по размерной стойкости инструмента (β_{10} , μ_{10}), так и на произвольных V скоростях резания (β_1 , μ_1) применительно к чистовой, получистовой и черновой токарной обработке:

$$\begin{split} \beta_{1} \ / \ \beta_{1o} &= (\ V \ / \ V_{o})^{k} = (\ B \ / \ B_{o})^{k}, \\ k &= m \quad \text{при} \quad V < V_{o}; \quad k = n \quad \text{при} \quad V \geq V_{o} \ , \\ B &= V \cdot (a_{1} \cdot 10^{3}) / a; \quad B_{o} = V_{o} \cdot (a_{1} \cdot 10^{3}) / a; \\ \mu_{1} \ / \ \mu_{1o} &= (\ V \ / \ V_{o})^{n} = (\ B \ / \ B_{o})^{n}, \\ n &= q \quad \text{при} \quad V < V_{o}; \quad n = p \quad \text{при} \quad V \geq V_{o} \ , \\ \beta_{1o} &= k_{o} \cdot E^{x1} \cdot \mathcal{I}^{x2} \cdot \Gamma^{x3} \cdot (tge)^{x4} \cdot (1 + \sin\gamma_{\pi})^{x5} \cdot (\sin\alpha_{\pi})^{x6} \cdot (1 + 0, 1 \cdot H)^{x7} \cdot \\ \cdot (1 + 2 \cdot 10^{-5} \cdot \mathcal{I}_{a} / E)^{x8} \cdot (1 + 0, 001 \text{Nu})^{x9} \ ; & (9 \); \\ \mu_{1o} &= k_{o} \cdot E^{m1} \cdot \mathcal{I}^{m2} \cdot \Gamma^{m3} \cdot (tge)^{m4} \cdot (1 + \sin\gamma_{\pi})^{m5} \cdot (\sin\alpha_{\pi})^{m6} \cdot (1 + 0, 1 \cdot H)^{m7} \cdot \\ \cdot (1 + 2 \cdot 10^{-5} \cdot \mathcal{I}_{a} / E)^{m8} \cdot (1 + 0, 001 \text{Nu})^{m9} \ , & (10 \); \\ \mathbf{B}_{o} &= k_{o} \cdot E^{p1} \cdot \mathcal{I}^{p2} \cdot \Gamma^{p3} \cdot (tge)^{p4} \cdot (1 + \sin\gamma_{\pi})^{p5} \cdot (\sin\alpha_{\pi})^{p6} \cdot (1 + 0, 1 \cdot H)^{p7} \cdot \\ \cdot (1 + 2 \cdot 10^{-5} \cdot \mathcal{I}_{a} / E)^{p8} \cdot (1 + 0, 001 \text{Nu})^{p9} \ , & (11 \), \end{split}$$

- где Б = $(V \cdot a_1)/a$; Б $_0$ = $(V_0 \cdot a_1)/a$; Е= ρ_1/a_1 ; Д= a_1/b_1 ; Г= λ_p/λ_π ; И = h_3/ρ_1 ; Да = d/a_1 безразмерные критерии подобия, характеризующие технологические условия обработки [1-2];
 - а коэффициент температуропроводности обрабатываемого материала, ($\cdot 10^{-6}$) [1-2], $_{\rm M}^2/{\rm c}$;
 - λ_p , λ_{π} коэффициенты теплопроводности инструментального и обрабатываемого материалов [1–2], $Bt/(M\cdot K)$;

хі, ті – безразмерные коэффициенты, зависящие от следующих параметров:

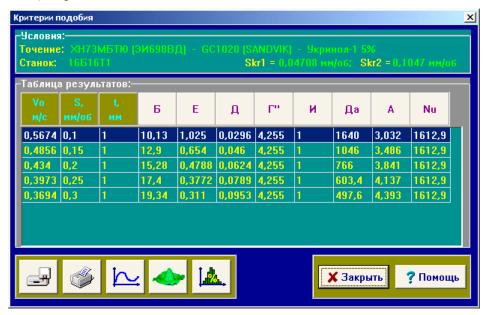
xi, mi = $f(\Pi, \Gamma, \text{tgc}, (1+\sin\gamma), (\sin\alpha), (1+0,1\cdot M), (1+2\cdot 10^{-5}\cdot \Pi a/E), (1+0,001\cdot Nu)$.

Критерий Нуссельта Nu, входящий в аналитические выражения (6), (7)-(14), характеризует интенсивность конвективного теплообмена между поверхностью нагретого твердого тела (*обрабатываемая заготовка*) и омывающей ее жидкости (СОТС) при осуществлении процесса резания.

Критерий Нуссельта Nu определяется следующим образом [2]

$$Nu = k_1 + k_2 \cdot d^x,$$

где коэффициенты k_1 , k_2 зависят от применяемой марки СОТС (и предопределяются коэффициентами теплоотдачи, теплопроводности, кинематической вязкостью, скоростью подачи и расходом указанной СОТС). d – диаметр обработки, мм.


Выбор вышеуказанной формы представления аппроксимируемых выражений (7) – (8) производился целенаправленно и обусловлен тем, что при лезвийной обработке материалов на оптимальных по размерной стойкости инструментах скоростях резания (V_o) выходные характеристики этой обработки $\it n$ и $\it b$ о $\it npuo \it bpe maio m$ экстремальные значения (например, путь резания $\it L_p$, относительный линейный $\it h_{on}$ и относительный поверхностный $\it h_{on}$ износ режущего инструмента, глубина $\it h_c$ и степень наклепа $\it N_c$ формируемого поверхностного слоя, шероховатость обработанной поверхности $\it R_z$, главная составляющая силы резания $\it P_z$ и др.), $\it n$ и $\it b$ о (как, например, угол сдвига $\it b$ 1, мощность и температура резания $\it \Theta$) $\it npuo \it bpe maio m$ другой характер монотонного изменении.

Разделение скоростного диапазона лезвийной обработки на две зоны ($V < V_o$ и $V \ge V_o$) позволило упростить аппроксимационное описание (в единой типовой форме) аналитических выражений для расчетного определения выходных характеристик процесса резания в зависимости от технологических условий обработки, повысить достоверность этого описания, а также сократить объем, облегчить и ускорить отладку соответствующего математического обеспечения создаваемых САПР ТП.

Подставив аналитические зависимости (7) - (11) в существующие теоретические выражения, предопределяющие основные температурно-силовые, контактные, стойкостные и другие выходные характеристики процесса резания как на оптимальной, так и на произвольной скоростях резания (включая точность обработки и параметры формируемого поверхностного слоя изготовляемой продукции), было разработано новое математическое обеспечение для САПР ТП лезвийной обработки материалов (в частности, для точения), сделав его более современным и учитывающим применение новых инструментальных материалов импортного производства с износостойкими покрытиями.

На основе указанного математического обеспечения создана прикладная САПР ТП для прогнозирования выходных характеристик процесса токарной обработки материалов современными инструментами с износостойкими покрытиями.

Отдельные фрагменты работы данной программы применительно к токарной обработке сплава ХН73ЬБТЮ (ЭИ698ВД) режущей пластиной GC1020 (*PVD muna, покрытие TiN*) представлены ниже

Литература

- 1. *Силин С. С.* К вопросу теоретического расчета сил резания [Текст] / С.С. Силин, В.А. Козлов // Производительная обработка и технологическая надежность деталей машин: сб. науч. тр. / ЯПИ. Ярославль, 1977. Вып. 6. С.25–36.
- 2 *Козлов В. А.* Структурно-параметрическая оптимизация процесса точения [Текст]: монография. Рыбинск, РГАТА, 2000. 671 с.