УДК 621.77.01

ИССЛЕДОВАНИЕ ДИФФУЗИОННОЙ ПОДВИЖНОСТИ АЗОТА И УГЛЕРОДА В МНОГОСЛОЙНЫХ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛАХ ПРИ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКЕ

Евгения Евгеньевна Шистка

Студентка 5 курса, кафедра «Материаловедение», Московский государственный технический университет имени Н.Э. Баумана

Научный руководитель: А.И. Плохих, кандидат технических наук, доцент кафедры «Материаловедение», Московский государственный технический университет имени Н.Э. Баумана

Как известно, использование слоистых материалов позволяет значительно повысить ресурс деталей и конструкций, работающих в условиях высоких температурно-силовых нагрузок с одновременной экономией дорогостоящих легирующих элементов. Наряду с известным применением таких материалов, весьма интересным оказалось использование заготовок состоящих из сотен и тысяч слоев разнородных металлов и сплавов. Необходимость разработки нано- или ультрадисперсных материалов определяется особенностью их физико-химических свойств, позволяющих достигать новые свойства для использования на практике.

В тоже время теория и практика химико-термической обработки показывает, что существенное влияние на процессы диффузии легирующих элементов оказывают несовершенства кристаллического строения. Принято считать, что в металлических материалах диффузия имеет более высокие кинетические параметры при наличии высокой плотности дислокационной структуры по сравнению с материалами с пониженной плотностью дефектов.

Несмотря на возможные трудности, весьма перспективной, для деталей подвергаемых поверхностному насыщению, может оказаться идея формирования особого вида регулярной микроструктуры, строение которой увеличивало бы скорость и глубину проникновения легирующих элементов. По нашему мнению это возможно сделать используя толстолистовые заготовки с заранее подготовленной ламинарной структурой субмикро- и наноразмерного диапазона заданного химического состава.

Для исследования были использованы многослойные металлические материалы, изготовленные из различных групп сталей, которые в силу различия химического состава отличались значениями коэффициентов диффузии углерода и азота. При составлении композиции многослойного материала ожидалось, что каждая составляющая окажет собственное, отличное от соседнего слоя, влияние на результат науглероживания и азотирования. Таким образом, предполагалось оценить преимущественное влияние составляющих композиции на направленную диффузию насыщающего элемента по границам раздела между соседними слоями.

Литература

1. Колесников А. Г., Мечиев Ш. Т., Панова И. Ю. Состояние и перспективы применения многослойных металлических заготовок // Заготовительные производства в машиностроении. -2008. -№ 1. - C. 42-43

2. Колесников А.Г., Плохих А.И., Комиссарчук Ю.С., Михальцевич И.Ю. Исследование особенностей формирования субмикро- и наноразмерной структуры в многослойных материалах методом горячей прокатки // МиТОМ. − 2010. − № 6. − С. 44–49