УДК 621.7

ИССЛЕДОВАНИЕ ПРОЦЕССА ВЫТЯЖКИ С ИСПОЛЬЗОВАНИЕМ ПРОФИЛИРОВАННОГО ПРИЖИМА

Андрей Игоревич Фирсов

Студент 4 курса кафедра «Технологии обработки металлов давлением» Московский государственный технический университет им. Н.Э. Баумана

Научный руководитель: В.А.Кривошеин, кандидат технических наук, доцент кафедры «Технологии обработки металлов давлением»

Ввеление

С учетом допустимого формоизменения для изготовления деталей листовой штамповки в ряде случаев требуются технологические процессы с большим количеством операций и переходов, а соответственно с большим количеством штампов и занятого штамповкой оборудования.

В этих случаях для сокращения длительности технологического процесса весьма желательно существенное увеличение допустимого за один переход формоизменения по сравнению с достигаемыми в традиционных условиях штамповки.

С этой целью были разработаны и используются в промышленности особые способы штамповки, условия деформирования заготовки в которых отличаются от традиционных.

Исследованные ранее методы силовой и термической интенсификации позволяют значительно повысить степень деформации, но использование этих методов имеет ряд недостатков, среди которых:

- необходимость применения точного локального нагрева и дополнительных нагревательных устройств;
- потребность в использовании сложных конструкций штампового инструмента с применением подпружиненных подпоров, либо подпоров с отдельным приводом.

С учетом этих недостатков предлагается способ интенсификации с помощью профилированного прижима, что позволяет снизить влияние сил контактного трения, и тем самым повысить формоизменения за операцию. Использование такого способа не требует использования нагревательного оборудования и сложной конструкции штамповой оснастки и может совместно использоваться с другими способами интенсификации.

В связи с этим, решено провести исследование процесса вытяжки с использованием профилированного прижима с целью выявления области применения данного способа, его преимуществ и недостатков относительно других способов интенсификации.

Описание способа:

При использовании данного способа интенсификации (рис.1) силы трения со стороны прижима возникают только в зонах контакта заготовки с выступам профиля (участок 1). На этом участке наряду с напряжениями σ_p и σ_θ на поверхности заготовки также действуют нормальные напряжения σ_p по Протяженность данного участка можно приближенно считать равной длине скругленного участка вершины выступа профиля.

Участок 2 не имеет контакта с рабочей поверхностью прижима. Для проверки эффективности применения данного способа решено провести компьютерное моделирование.

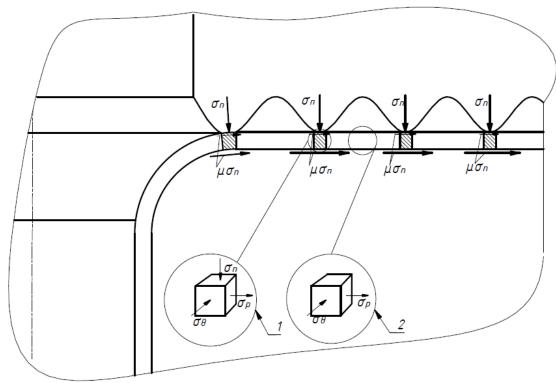


Рис.1.Схема внутренних и внешних сил при вытяжке с использованием профилированного прижима и участки в очагах пластической деформации:

- 1 участок контакта с прижимом;
- 2 участок без контакта с прижимом

Условия проведения эксперимента:

Все исследования были проведены с использование САПР Autoform. Диаметр исходной заготовки D=140мм, диаметр детали после вытяжки

d = 90мм. Было проведено 36 опытов по плану полнофакторного эксперимента (табл.

1). Варьировались параметры: s- толщина листовой заготовки, μ - коэффициент трения, p - шаг выступов профиля прижима.

Таблица1. План эксперимента

	Tuomiqui. Tistati one in primerita						
№	<i>S</i> , мм	μ	р, мм				
1	0,3	0,15	плоский				
2	0,3	0,15	2				
3	0,3	0,15	5				
4	0,3	0,15	7				
5	0,3	0,2	плоский				
6	0,3	0,2	2				
7	0,3	0,2	5				
8	0,3	0,2	7				
9	0,3	0,3	плоский				
10	0,3	0,3	2				
11	0,3	0,3	5				

12	0,3	0,3	7
13	0,5	0,15	плоский
14	0,5	0,15	2
15	0,5	0,15	5
16	0,5	0,15	7
17	0,5	0,2	плоский
18	0,5	0,2	2
19	0,5	0,2	5
20	0,5	0,2	7
21	0,5	0,3	плоский
22	0,5	0,3	2
23	0,5	0,3	5
24	0,5	0,3	7
25	1	0,15	плоский
26	1	0,15	2
27	1	0,15	5
28	1	0,15	7
29	1	0,2	плоский
30	1	0,2	2
31	1	0,2	5
32	1	0,2	7
33	1	0,3	плоский
34	1	0,3	2
35	1	0,3	5
36	1	0,3	7

Схема эксперимента (рис.2) и зоны контакта заготовки и прижима (рис.3) позволяют наглядно продемонстрировать процесс проведения опыта.

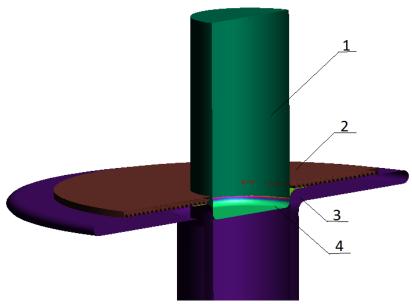


Рис.2.Схема эксперимента: 1 – пуансон; 2 – прижим; 3 – матрица; 4 – заготовка

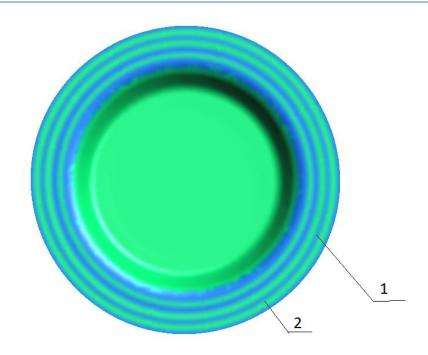


Рис.3. Зоны контакта заготовки и прижима: 1 - зона контакта заготовки с прижимом; 2 - свободная зона

Результаты проведения эксперимента:

Из графика (рис.4.) видно, что использование профилированного прижима снижает силу деформирования на протяжении всего процесса вытяжки. В среднем усилие вытяжки снижается на 4,3% в зависимости от толщины заготовки.

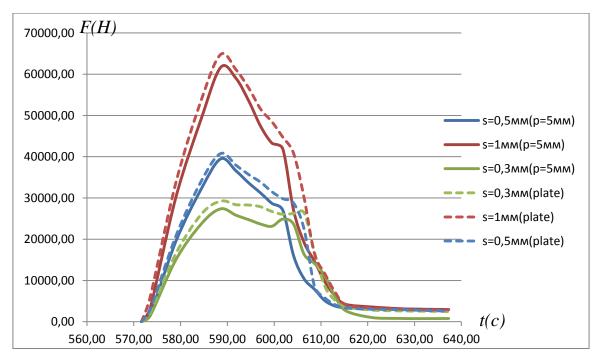


Рис.4. График зависимости силы деформирования от времени проведения процесса вытяжки с использованием прижима с шагом p=5мм, μ =0,2

Из данного графика (рис.5.) следует, что в зависимости от коэффициента трения, эффект имеет прижим с шагом профиля (p) в диапазоне 4..6 мм.

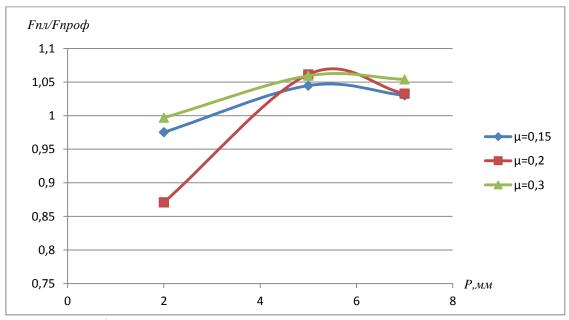


Рис.5. График зависимости отношения силы вытяжки с плоским прижимом $F_{\rm пл}$ к силе вытяжки с профилированным прижимом $F_{\rm проф}$ от фактора трения μ , для толщины s=0,5мм

График (рис.6) показывает, что при данных условиях проведения эксперимента прижим с шагом профиля p=5мм имеет наибольшую эффективность

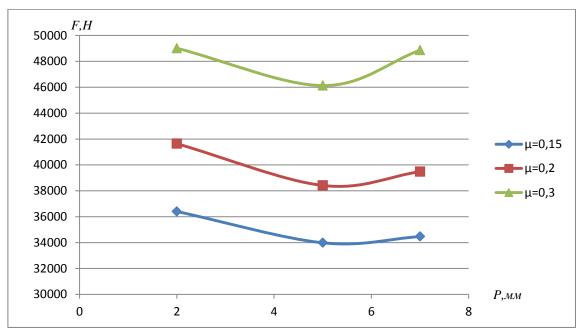


Рис. 6. График зависимости силы вытяжки F от шага профиля прижима P, для параметров s=0,5

Из графика (рис.7.) видно, что с ростом коэффициента трения, эффективность исследуемого метода интенсификации растет.

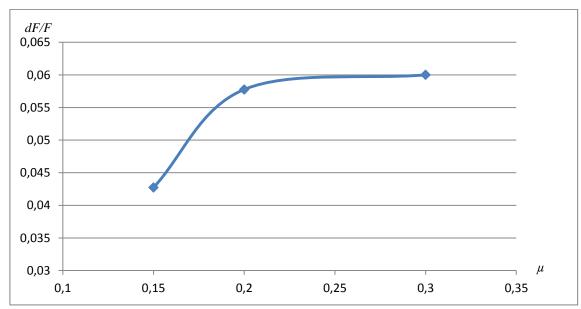


Рис.7. График зависимости выигрыша в силе от фактора трения μ , для s=0,5мм

При определенных параметрах (рис.8.) эксперимента (s=0,5мм, $\mu=0,3$) использование плоского прижима вызывает отрыв дна заготовки в опасном сечении, но использование прижима с шагом профиля p=5мм и p=7мм позволяет избежать отрыва.

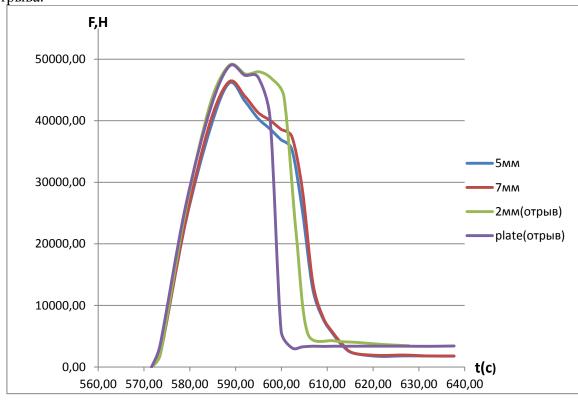


Рис.8. График зависимости силы вытяжки F от времени вытяжки t, при s = 0.5мм, $\mu = 0.3$.

Отрыв дна заготовки в опасном сечении при использовании плоского прижима и прижима с шагом профиля p = 2мм (рис.9.) .

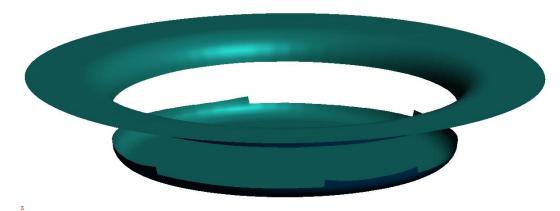


Рис. 9. Отрыв дна заготовки в опасном сечении

Таблица2. Максимальная сила деформирования, возникающая при вытяжке

p(шаг $),$ мм												
	2			5		7		плоский				
	μ				μ		μ		μ			
s,mm	0.15	0.2	0.3	0.15	0.2	0.3	0.15	0.2	0.3	0.15	0.2	0.3
1	58617	65177	77084	56263	61656	76116	57068	62170	72619	58031	64795	76090
0.5	36404	41641**	49014*	33986	38415	46128	34466	39478	46362	35503	40770	48861*
0.3	26078	29568*	33306*	23465	27364	33095*	25165**	27848**	32460**	25658	29229	33093*

^{* -} отрыв заготовки, ** - образование складок

В таблице 2 представлены результаты по максимальной силе деформирования, возникающей при вытяжке, в зависимости от толщины заготовки s, фактора трения μ и шага профиля прижима P.

Из данной таблицы видно, что применение прижима с шагом p=2мм не целесообразно для данных толщин материала. Применение же прижима с шагом профиля P=5..7мм имеет положительный эффект.

Выводы:

- 1. Сила при вытяжке с использованием профилированного прижима снижается. Наибольший эффект достигнут для параметров P=5мм, $\mu=0,2$, s=0,5 мм и равен 5,8%.
- 2. Данный метод интенсификации наиболее эффективен при коэффициенте трения µ более 0,15, что объясняется тем, что данный способ позволяет повысить коэффициент вытяжки именно за счет снижения влияния сил контактного трения.

- 3. Данный метод применим для всего диапазона рассматриваемых толщин заготовок от 0,3 до 1мм,и чем меньше толщина листа, тем меньше должен быть шаг профиля для избежания образования гофр.
- 4. Использование профилированного прижима при определенных параметрах процесса позволяет значительно повысить коэффициент вытяжки.

Литература

- 1. *Попов Е. А., Ковалев В. Г., Шубин И. Н.* Технология и автоматизация листовой штамповки: учебник для вузов / 2-е изд., стер. М.: Изд-во МГТУ им. Н. Э. Баумана, 2003. 478 с.: ил. Библиогр.: с. 478.
- 2. *Кривошеин В.А.* Интенсификация процесса обжима посредством выбора геометрии поверхности контакта заготовки с матрицей. // Заготовительные производства в машиностроении.-2011.-№6.-6.-С.19-22.
- 3. *Кривошеин В.А.* Сравнительный анализ теоретических и экспериментальных данных при исследовании процесса обжима в матрице с кольцевыми канавками // Известия вузов. Машиностроение. 2011. № 5. С. 10-12.