УДК 621.791.725

СВАРКА ЖАРОПРОЧНОГО СПЛАВА ВОЛОКОННЫМ ЛАЗЕРОМ

Эрик Александрович Питра

Студент 5 курса

кафедра "Лазерные технологии в машиностроении"

Московский государственный технический университет

Научный руководитель: А.В. Богданов, доктор технических наук, доцент кафедры «Лазерные технологии в машиностроении», Б.М. Федоров доктор технических наук, доцент кафедры «Лазерные технологии в машиностроении»

Аннотация

При получении сварного соединения с помощью аргонодуговой, плазменной или лазерной сваркой и последующей термообработке, с различной степенью вероятности возможно появление ряда дефектов. Таких как горячие и холодные трещины, поры, несплавления и непровары, прочие дефекты. Трещины являются опасным дефектом сварного соединения. При различных способах сварки они могут появляться с различной степенью вероятности. При лазерной сварке такая вероятность минимальна. В данной работе описан подобранный оптимальный режим для лазерной сварки жаропрочного сплава с точки зрения минимальной околошовной зоны, исследована структура шва.

Трещина - несплошность, вызванная местным разрывом сварного соединения, которая может возникнуть в результате охлаждения или действия нагрузок. В зависимости от температуры, при которой образуются трещины, их условно подразделяют на горячие и холодные. Горячие трещины в сталях возникают при высоких температурах.

В интервале температур плавления и полного затвердевания происходит миграция примесей и загрязнений в межзёренные пространства. Наличие между зернами жидкой фазы, примесей и загрязнений снижает деформационную способность шва и околошовной зоны. Неравномерность усадки шва и основного металла при охлаждении приводит к исчерпанию деформационной способности, являющейся причиной появления микро- и макроскопических трещин как вдоль, так и поперек шва.

Причинами образования горячих трещин при сварке являются:

- большое количество вредных примесей (особенно серы и фосфора) в металле свариваемых заготовок;
- наличие в металле шва элементов, образующих химические соединения с низкой температурой затвердевания (хром, молибден, ванадий, вольфрам, титан), нарушающие связь между зернами;
- жесткое закрепление свариваемых заготовок или повышенная жесткость сварного узла, затрудняющая перемещение заготовок при остывании.

Общими причинами появления трещин, как горячих, так и холодных являются:

- слишком высокая жесткость соединений;
- слишком малый размер сварного шва для данной толщины соединения;
- несоблюдение или неправильный выбор технологии сварки;
- дефекты в сварном шве;

- t неправильная подготовка соединения под сварку;
- использование повышенных значений сварочного тока, которое может привести к появлению крупнозернистых охрупченных участков структуры;
- высокое содержание углерода или легирующих элементов в основном металле, не учтенное при выборе технологии сварки.
 - Для предупреждения образования трещин в швах сварных соединений необходимо:
- разрабатывать металлоконструкции и технологию сварки, которые позволяют исключить применение соединений с высокой жесткостью;
- при сварке изделий достаточно большой толщины увеличивать размеры сварных швов;
- выбирать последовательность выполнения сварных швов такой, чтобы максимально долго оставлять незаваренными концевые участки соединения, с тем чтобы они обладали максимально возможной подвижностью;
- обеспечить сплошность и хорошее сплавление сварных швов;
- в некоторых случаях обеспечить предварительный подогрев свариваемых частей;
- сборку соединений производить с одинаковым и требуемым по технологии зазором, при необходимости для выравнивания зазора применять стягивающие сборочные приспособления;
- не допускать при сварке завышенных по сварочному току режимов сварки;
- по возможности сварной шов делать многопроходным, так как однопроходные швы могут быть более хрупкими, а в многопроходных швах происходит отжиг каждого предыдущего слоя;
- разделку заполнять сразу после завершения сварки корня шва, так как воздействию напряжения чаще всего подвергается область корневого шва. [1]

В настоящей работе будет описаны полученные данные после сварки хромоникелевого сплава на примере ЭП693 - пластины толщиной 1,5 мм, используемого для изготовления корпусов авиадвигателей и лопаток турбин. Сварка осуществлялась с помощью иттербиевого волоконного лазера ЛС-4 фирмы IPG Photonics. Были замерены ширина шва и ЗТВ полученных соединений. Изучен тип структуры поверхности образца.

Таблица 1. Химический состав в %, материала

Cr	Ni	Al	Ti	W	Mo	Co	F
15	основа	1,2	2,1	6	4,5	7	<0,3

Широко применяемая аргонодуговая сварка в авиационной промышленности недостатков, таких как нестабильность имеет ряд горения дуги, низкая производительность, высокие требования к свариваемым деталям, нежелательность сварки деталей с покрытиями. В свою очередь волоконный лазер, обладая следующими преимуществами: высокие скорости нагрева и охлаждения, малая ЗТВ, возможность доставки излучения в нужную точку практически без потерь мощности в волокне, стабильное формирование шва вне зависимости от магнитных полей - обеспечивает высокую технологическую прочность сварных соединений, небольшие деформации сварных конструкций. Т.к. свариваемый материал в своей основе имеет никель, то при сварке лазером можно получить пластичный шов и хорошее проникновение лазерного излучения.

В ходе эксперимента были получены размеры ЗТВ и ширины шва для различных мощностей и скоростей сварки. Полученные измерения представлены в таблицах 1 и 2.

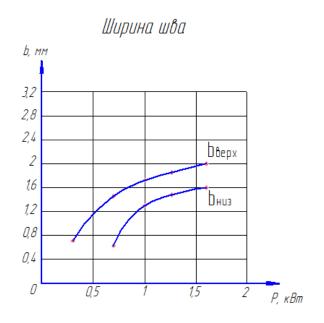
Таблица 2. Выбор оптимальной мощности при Vcв=const:

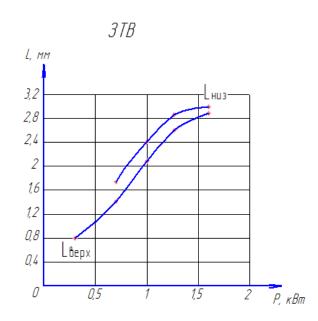
№	Р, кВт	Vсв, мм/сек	L ^{Bepx} , MM	L ^{ни3} , мм	b ^{Bepx} , MM	b ^{низ} , мм
2	0,7	30	1,4	1,7	1,45	0,6
3	1	30	2,1	2,4	1,7	1,4
4	1,3	30	2,6	2,9	1,8	1,5
5	1,6	30	2,9	3,0	2	1,6

Выбор оптимальной мощности обусловлен, с одной стороны необходимой мощностью для полного проплавления сплава, а с другой стороны наименьшей возможной ЗТВ.

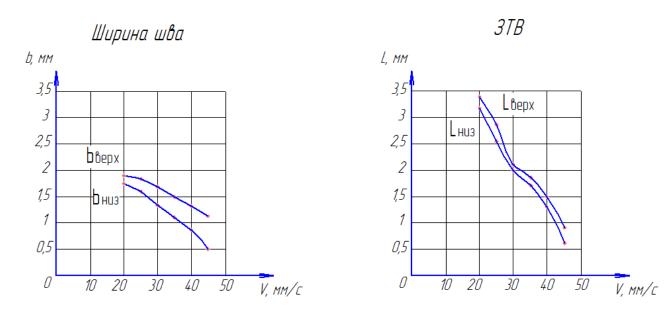
Таблица 3. Выбор оптимальной скорости сварки при мощности Р=1кВт

	The state of the s						
№	Р, кВт	Vсв, мм/сек	L^{Bepx} , MM	L^{hu3} , mm	b ^{Bepx} , MM	b ^{низ} , мм	
	,	,	,	,	,	,	
6	1	20	3,4	3,2	1,9	1,7	
7	1	25	2,8	2,5	1,8	1,6	
8	1	30	2,1	2,0	1,7	1,4	
9	1	35	1,8	1,7	1,5	1,1	
10	1	40	1,5	1,3	1,4	0,8	
11	1	45	0,9	0,6	1,2	0,5	




Рис.1. Схема шва

- L Ширина зоны термического влияния. Измерена по цветам побежалости;
- b Ширина шва;


Оптимальная скорость сварки была ограниченна с одной стороны отсутствием кинжального проплавления, а с другой стороны - ухудшением формирования шва, появлением пор, непроваром. При скорости сварки более 35 мм/с наблюдается ухудшение формирования шва, грат. Далее представлены графики зависимостей ЗТВ и ширины шва от мощности и скорости сварки.

Выбор мощности при Vсв=30 мм/с

Выбор скорости сварки при Р=1 кВт

По результатам эксперимента выбрана оптимальные мощность P=1~kBt и скорость сварки Vcb=35~mm/c. Полученный режим сварки: P=1~kBt, Vcb=35~mm/cek, $d_f=0,1~mm$, f=200~mm;

Для изучения структуры шва был сделан шлиф одного из швов. При рассмотрении поверхности шлифа была изучена его поверхность. Основной метал образца имеет аустенитный тип структуры, шов - дендритный.

Литература

- 1. [Электронный ресурс] http://penzaelektrod.ru/articles/art9.htm
- 2. Шоршоров М. Х., Ерохин А. А., Чернышева Т. А. Горячие трещины при сварке жаропрочных сплавов М.: Машиностроение, 1973. -223 с.
- 3. Николаев Г. А., Куркин С. А., Винокуров В. А. Сварные конструкции, Прочность сварных соединений и деформации конструкций М.: Высшая школа, 1982. -272 с.