УДК 669.716:621.785

СТРУКТУРА И ФАЗОВЫЙ СОСТАВ ДИФФУЗИОННОЙ ЗОНЫ, СФОРМИРОВАННОЙ ПРИ КОНТАКТНОМ ПЛАВЛЕНИИ НА МЕЖСЛОЙНОЙ ГРАНИЦЕ БИМЕТАЛЛА МЕДЬ М1 + ТИТАН ВТ1-0*

Анна Андреевна Чешева $^{(1)}$, Виталий. Павлович Кулевич $^{(2)}$, Юлия Игоревна Бондаренко $^{(2)}$

Магистр 1 года ⁽¹⁾,студент 3 курса ⁽²⁾, кафедра «Материаловедение» Волгоградский государственный технический университет

Научный руководитель: В.Г. Шморгун $^{(1)}$, О.В. Слаутин $^{(2)}$ доктор технических наук, профессор $^{(1)}$, кандидат технических наук, доцент $^{(2)}$ кафедры «Материаловедение»

Исследованы структура и фазовый состав диффузионной зоны, сформированной в присутствии жидкой фазы на межслойной границе медно-титанового композита, полученного сваркой взрывом.

В работах [1-4] показано, что нагрев слоистых металлических композитов систем (Ni-Al, Ti-Al, Ti-Cu и др.) выше температуры эвтектического превращения приводит к одновременному протеканию двух процессов - плавления и реактивной диффузии. В результате на границе раздела слоев формируется диффузионная зона, структура и фазовый состав которой контролируется температурно-временными условиями термообработки (TO).

Проведенные нами исследования показали, что контактное плавление в системе Ti-Cu начинается при температуре выше $900^{\circ}C$ (рис 1). Поэтому исследование структуры и свойств межслойной границы сваренного взрывом биметалла медь M1 (4мм)+титан BT1-0 (4 мм) проводили после его TO 900 – $980^{\circ}C$ с различными временами выдержки.

Размер диффузионной зоны определяли с помощью микроскопа OLYMPUS BX 61 на грани шлифа, нормальной к поверхности раздела. В каждом случае проводили не менее 20 измерений, что позволило получить величину ошибки \pm 0,4мкм.

Измерения микротвердости проводили по стандартной методике на приборе ПМТ-3 под нагрузкой 50 грамм.

Рентгеновские съемки выполняли на дифрактометре ДРОН-3 в излучении медного анода. Расшифровку дифрактограмм проводили путем сравнения полученных значений межплоскостных расстояний с табличными данными картотеки ASTM для каждой из фаз.

а б в Рис. 1. Микроструктура зоны соединения в биметалле М1+ВТ1-0 после ТО при температуре 850 (а) и 880°С (б), 1ч и 900°С (в), 5 мин (х500)

На рисунке 2 представлены результаты экспериментальных данных, отражающих зависимость толщины диффузионной зоны от режимов нагрева. Их анализ показывает, что с увеличением времени выдержки прослойка растет до тех пор, пока весь титановый слой не трансформируется в диффузионную зону. Интенсивность взаимодействия определяется, в основном, температурой нагрева.

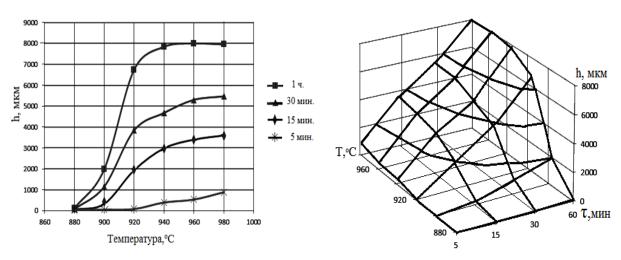


Рис. 2. Влияние режимов TO на размер диффузионной зоны, образующейся на границе титан — медь

В результате ТО в меди происходят структурные изменения, связанные с увеличением размера зерна во всем диапазоне исследованных температур (рис.3.), что в свою очередь отражается на значениях микротвердости (рис.4). В титановом слое вследствие нагрева выше температур $\alpha \rightarrow \beta$ превращения, после охлаждения формируется игольчатая структура (рис.3. б, в) твердого раствора переменной концентрации, что сопровождается соответствующим изменением микротвердости (рис.4).

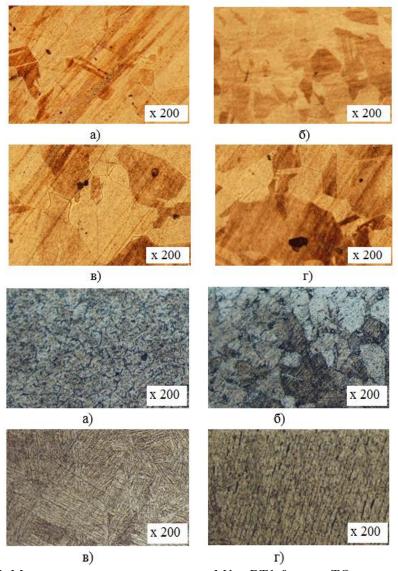


Рис. 3. Микроструктуры меди и титана М1 и ВТ1-0 после ТО при температуре 880 (а), 900 (б), 940 (в) и 980 (г) °C

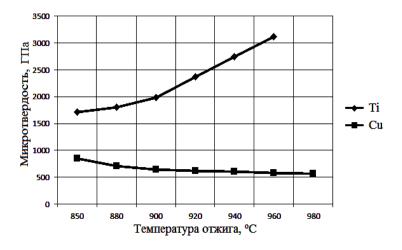


Рис.4. Характер изменения микротвердости меди и титана M1 и BT1-0 в зависимости от режимов термической обработки

Структура диффузионной зоны в ее поперечном сечении неоднородна (рис. 5, 6). У границы с титаном значения твердости в среднем в полтора раза выше, чем у границы с медью (рис.7). При переходе от одной структурной составляющей к другой наблюдается достаточно большой разброс значений микротвердости (до 0,8 ГПа).

 $a~(\mathrm{x}100)$ $\delta~(\mathrm{x}100)$ $\delta~(\mathrm{x}50)$ Рис. 5. Микроструктура диффузионной зоны в биметалле М1+ВТ1-0 после ТО 900°С в течении 15 (a), 30 (б) и 60 (в) мин

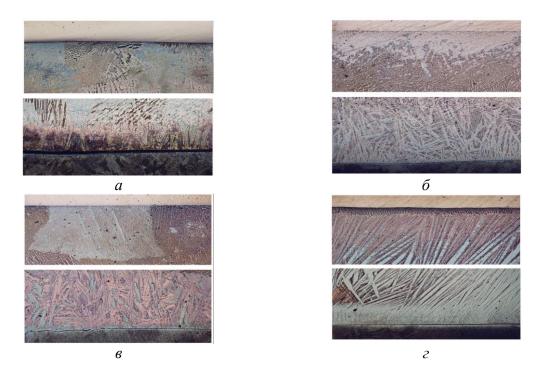


Рисунок 6. Микроструктура диффузионной зоны в биметалле M1+BT1-0 после ТО в течение 15 мин при температуре 920 (a), 940 (б), 960 (в) и 980 °C (г) (х50)

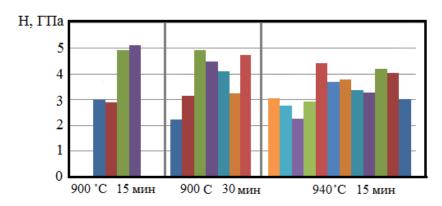


Рис. 7. Распределение микротвердости в поперечном сечении диффузионной зоны (от меди к титану)

Сопоставление массовой доли прореагировавших компонентов (оценивали по изменению толщины соответствующего слоя) с диаграммой состояния медь-титан [5] позволило в первом приближении оценить фазовый состав диффузионной зоны. Результаты такой оценки представлены в таблице 1. Их анализ свидетельствует о том, что состав диффузионной зоны должен меняться в зависимости от температурновременных режимов ТО.

Таблица 1.Оценка фазового состава по количеству прореагировавших компонентов

Температура	Время	Исходная	Прореагировавшие		Cu / Ti	Фазовый состав
		толщина	компоненты			согласно [4]
°C	МИН	MM	Си, мм	Ті, мм	об.%	
	15		0,87	0,086	91/9	$(Cu) + TiCu_4$
900	30		0,959	0,196	83/17	$TiCu_2 + TiCu_4$
	60		0,497	1,49	25/75	$\alpha Ti + Ti_2Cu$
920	15	4+4	1,453	0,484	75/25	$TiCu_2 + TiCu_4$
940	15		2,0	0,985	67/33	$Ti_2Cu_3 + TiCu_4$
960	15		1,598	1,802	47/53	$Ti_3Cu_4 + TiCu$
980	15		1,548	2,052	43/57	$Ti_3Cu_4 + Ti_2Cu_3 +$
						TiCu

Расшифровка дифрактограмм после рентгеновской съемки со стороны диффузионной зоны, механически отделенной от слоя титана, показала, что структура и фазовый состав диффузионной зоны зависит от температурно-временных режимов ТО. Так после ТО (900°С) в составе диффузионной зоны идентифицируются линии, соответствующие интерметаллидам $TiCu_3$ и $TiCu_3$ и $TiCu_4$, а при 960°С - Ti_3Cu_4 , $TiCu_5$, $TiCu_6$ и $TiCu_7$ (рис. 8).

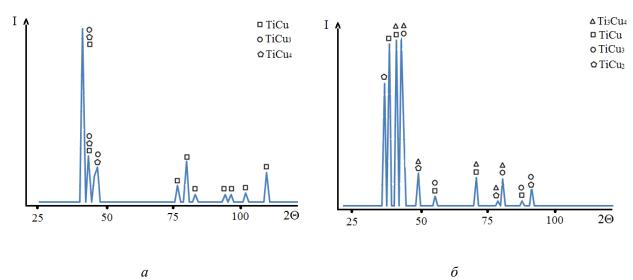


Рис. 8. Дифрактограммы, полученные после съемки с поверхности диффузионной зоны, после ТО 900 (а) и 960°С (б) в течении 15 мин

Таким образом, проведенные нами исследования показали, что диффузионное взаимодействие в присутствии жидкой фазы приводит к исчезновению сформировавшегося при сварке взрывом на границе раздела титанового и медного слоев волнового профиля и формированию на поверхности меди интерметаллидного покрытия, структура и фазовый состав которого определяются температурновременными режимами термообработки.

*Работа выполнена при финансовой поддержке грантов РФФИ (13-08-00066 A и 13-08-97025 p поволжье a) и Министерства образования и науки РФ

Литература

- 1. *Kundu. S.* Diffusion bonding of commercially pure titanium to 304 stainless steel using copper interlayer / S. Kundu, M. Ghosh, A. Laik, K. Bhanumurthy, G.B. Kale, S. Chatterjee // Materials Science and Engineering 2005 (A 407). p. 154–160.
- 2. *Bratanich. T. I.*, "Kinetics of destructive hydrogenation of Ti2Cu and TiCu intermetallides / T. I. Bratanich, V. V. Skorokhod, and O. V. Kucheryavyi // Powder Metall. Met. Ceram 2010, №6, p. 330–338.
- 3. R.K. Shiue, S.K. Wu, C.H. Chan, and C.S. Huang: Infrared braz-ing of Ti-6Al-4V and 17-4 PH stainless steel with a nickel barrier layer. Metall. Mater. Trans. A37,2207 (2006).
- 4. Шморгун В.Г. Формирование структуры диффузионной зоны СИК системы Ni-Al в присутствии жидкой фазы / Шморгун В. Г., Трыков Ю. П., Богданов А. И., Арисова В. Н // № 5(78). Волгоград: ИУНЛ ВолгГТУ, 2011.— Сер. Проблемы материаловедения, сварки и прочности в машиностроении. Вып. 5. с. 11-14.
- 5. *Lee. M.K.* Strong bonding of titanium to copper through the elimination of the brittle interfacial intermetallics / M.K. Lee, J.G. Lee, J.K. Lee, J.J. Park, G.J. Lee, Y.R. Uhm, and C.K. Rhee // J. Mater. Res., Vol. 23, No. 8, Aug 2008, p. 2254-2263.